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SUMMARY

Due to reliance on human knowledge the practice of medicine is subject to errors
that endanger patients’ health and cause substantial financial loss to both public
and governmental health sectors. The computer-based decision making systems assist
healthcare personnel to improve the quality of clinical practice. Currently, the decision
making knowledge within most guideline modeling languages are represented by basic
logical expressions. On the other hand, the results of data mining analysis on healthcare
data can be employed as the source of knowledge to improve decision making. In
this paper, we focus on encoding, sharing, and using the results of data mining
analyses for clinical decision making at the point of care. For this purpose, a knowledge
management framework is proposed that addresses the issues of data and knowledge
interoperability by adopting healthcare and data mining modeling standards, HL7 and
PMML respectively. In a further step data mining results are incorporated into guideline-
based Clinical Decision Support Systems. A prototype tool has been developed as part of
this research that provides an environment for clinical guideline authoring and execution
capable of applying and interpreting data mining results. Also, three real world case
studies have been presented, one of which is used as a running example throughout
different phases of the proposed approach.
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1. Introduction

Because of the paramount importance of the quality of public health services, these services
consume a major portion of governmental spending in many countries and usually they
are considered as significant measures of people’s quality of life. In Canada the provincial
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government of Ontario invested a total of $28.1 billion in healthcare services in 2003-2004
[31], and; the Canadian Institute for Health Information (CIHI) estimated that the total
healthcare spending throughout Canada reached as high as $160 billion in 2007, up from $150.3
billion in 2006; this represents a forcasted annual increase of 6.6% [16]. However, the large
volume of spending in healthcare does not necessarily translate to ideal and error-free health
services. The inherent complexity and dynamic nature of the existing medical knowledge and
overwhelming amount of diverse medical information adversely affect a practitioner’s medical
practice. According to HealthGrades’ fifth annual Patient Safety in American Hospitals Study,
[25] medical errors cost the federal Medicare program $8.8 billion and resulted in 238,337
potentially preventable deaths during 2004 through 2006 alone.

Clinical Decision Support Systems (CDSS) are computer applications that assist
practitioners and healthcare providers in decision making through timely access to
electronically stored medical knowledge [13] in order to improve the practitioners’ medical
practice. A CDSS interacts with practitioners and electronic medical records systems to receive
the patient data as input and provides reminders, alerts, or recommendations for patient
diagnosis, treatment, long-term care planning, and alike. A Clinical Decision Support System
requires to access healthcare data and knowledge that are stored in data and knowledge
bases. Since these repositories normally have diverse internal representations, data and
knowledge interoperability are major issues. To achieve data interoperability two systems that
participate in data communication should use the same vocabulary set, data model, and data
interpretation mechanism. On the other hand, knowledge interoperability refers to the ability
of healthcare information systems to incorporate and interpret the knowledge that is produced
in other systems. We are mainly interested in the knowledge that is generated by data mining
algorithms and is represented using data mining specific data structures, called “data mining
models”.

The most important issues in current healthcare industry that lead us to define the problem
addressed in this paper are as follows: i) mining of healthcare data is a valuable source of
knowledge; however the extracted knowledge is often used locally by the researchers in a
proprietary system and is not made available to other interested users for easy and seamless
integration and application [30]; ii) there is no specific approach or methodology for seamless
integration of mined healthcare knowledge with the clinical decision making process, which is
mainly due to the complexity of data mining results; iii) the healthcare industry suffers from
the lack of standardization that is resulted from development of both ad-hoc systems and the
inherited legacy systems; and iv) healthcare information systems are usually heterogeneous
and are deployed in a distributed environment that necessitates careful handling of both data
and knowledge for achieving interoperability. Based on the above observations we define the
research problem in this paper as follows:

Devising methodologies, techniques, and tools to streamline the dissemination and
application of data and mined knowledge for clinical decision making purposes in the
heterogeneous clinical settings.

However, in this paper we do not directly address the issues such as: patient data privacy,
knowledge extraction from healthcare databases, and authenticity of the clinical best practice
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Figure 1. A guideline-based Clinical Decision Support System in a healthcare environment that allows
data and knowledge interoperability among heterogeneous systems.

guidelines.

Proposed approach

Figure 1 illustrates the proposed approach for clinical data and knowledge interoperability
and interpretation within the context of a Clinical Decision Support System. The proposed
approach relies on adoption of standards to encode healthcare data and knowledge. In an
off-line operation, existing healthcare databases are mined using different mining techniques
to extract and store clinical mined knowledge. In order to make this knowledge portable it
is encoded as data mining models using a specialized XML-based standard, namely PMML
(Predictive Model Markup Language) [19]. Also, the patient data that are stored in the
Electrical Medical Record (EMR) systems are encoded using HL7 (Health Level 7)[2] version
3(v3) standard to be made portable between heterogeneous systems. At the point of care, a
decision module accesses and operates on both data and knowledge in order to make patient-
specific interpretations of the knowledge available to the healthcare practitioner. Within the
CDSS we adopt a flow-oriented clinical guideline modeling language (GLIF3 [14]) to specify
the overall decision making process. In this context, at different states of the flow-oriented
guideline the CDSS accesses the patient data by making queries from the healthcare database.
Moreover, to perform knowledge-based decision making, the CDSS supplies the patient data
to the decision modules and receives the result of applying mined knowledge on the patient
data. Finally, the healthcare personnel receive comments, recommendations, or alerts through
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interaction with the CDSS system that allow them to make more knowledgeable decisions
based on the system provided information.

The contributions of this paper are as follows: i) proposing a novel framework that supports
data and (mined) knowledge dissemination and application in the context of Clinical Decision
Support Systems; ii) extending clinical guideline modeling standard GLIF3 to use the HL7
and PMML standards respectively for data and knowledge interoperability; iii) developing a
prototype tool for clinical guideline modeling and execution that supports integration of the
data mining results and decision making based on the mined knowledge; and iv) applying the
proposed approach on two real-world clinical data mining analysis from the literature.

The remainder of this paper is organized as follows: Section 2 provides an overview of
the related work in the area of healthcare decision support systems research. Section 3
proposes a novel framework for data and knowledge interoperability that is composed of 4
phases which are elaborated in Sections 4 to 7. Section 4 addresses the knowledge extraction
phase via data mining operations. Section 5 presents the standard-based data and knowledge
interoperability approach used in this research. In Section 6, we elaborate on the application
of the mined knowledge on the healthcare data at the point of use. Section 7 describes the
proposed extensions to the GLIF3 flow-based guideline modeling language. Section 8 presents
a guideline execution environment that is capable of interpreting the mined knowledge. Section
9 elaborates on the second real-world case study we used in this paper. Finally, Section 10
provides a short conclusion and sets the paths for future works.

2. Related work

In this section, we provide a short review of the related work on making healthcare data and
clinical best practices available for use in a computer interpretable manner.

GLIF3
Guideline Interchange Format 3 (GLIF3) [14] is a clinical guideline modeling language that
represents the clinical best practices as flow charts. The GLIF3 specification was developed by
the InterMed Collaboratory as a joint project of medical informatics laboratories at Harvard,
Stanford, Columbia, and McGill universities. GLIF3 guidelines are modeled by expert medical
researchers according to its specification and they are executed in the Clinical Decision Support
System to provide decision making support and clinical best practice how-to for the healthcare
professionals∗.

Flow charts are defined in the conceptual level of GLIF3 that is meant to provide easy
to encode and comprehend representation of the medical best practice. The control flow
details including decision criteria, patient related data, and medical concepts are specified
in the computable level which is integrated in the conceptual flow chart. At this level, GLIF3

∗GLIF3 guidelines have been developed for a variety of purposes, including but not limited to heart failure,
hypertension, thyroid screening, and many more.
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uses simple logical predicates and conditional statements to direct the guideline flow. For
GLIF3 guidelines to be eventually deployed at a healthcare institution, the patient data should
be mapped from the institution-specific information systems to the guideline’s internal data
variables. In Section 7.1, we will describe extensions to the GLIF3 conceptual and computable
levels in order to incorporate the data mining generated knowledge.

COMPETE III
Computerization Of Medical Practices for the Enhancement of Therapeutic Effectiveness
(COMPETE) [11] is a Canadian project that intends to bring computer-based decision support
facility for managing diabetes, hypertension, cholesterol, previous heart stroke, and chronic
disease patients. The knowledge-base of COMPETE III consists of a set of guidelines each
represented using a function table, where each row in the table specifies conditional statements
in the form of logical expressions, and rows represent possible situations that can trigger an
action, i.e., output a message. The rules encode output in a coloring scheme which is used
to convey particular meanings to the user. Simplicity and understandability of the tables are
considered as the strength of this approach, however the scope of knowledge that can be
represented and managed in this approach is limited.

e-MS
Electronic Medical Summary (e-MS ) [20] is not a Clinical Decision Support System, instead it
addresses the data interoperability problem in healthcare. e-MS project intends to make subsets
of patient data stored in one healthcare institution available to other stakeholders interested to
access them. The e-MS project defines an XML-based Electronic Medical Summary (e-MS )
document format, and an Electronic-Medical Summary Exchange Protocol (e-MSEP). The
documents encode different pieces of patient data into a structured textual format based on
the HL7 CDA [24]. The document structure and semantics associated with different data items
in the CDA structure are used to interpret the meaning of the whole document.

3. Framework for interoperability of data and mined knowledge

Figure 2 illustrates the overall view of the proposed framework for interoperability of data and
knowledge† in a heterogeneous healthcare environment, where the shaded area illustrates the
contributions of this paper. The framework consists of four phases Preparation, Interoperation,
Application, and Interpretation as briefly described below.

Phase 1 – Preparation. Data is collected, pre-processed and mined to extract patterns
and trends. The resulting mined-knowledge is stored in a knowledge repository to be
incorporated in the CDSS process in the subsequent phases.

Phase 2 – Interoperation. Patient data and mined clinical knowledge are encoded into HL7
and PMML standards respectively, in order to be supplied to the CDSS. This ensures

†In this paper, the term “knowledge” refers to “mined knowledge”.
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Figure 2. Healthcare framework for interoperability of data and mined knowledge. The shaded area
designates the contribution of this paper.

interoperability amongst medical record repositories and knowledge repositories that
support heterogeneous data formats and our CDSS.

Phase 3 – Application. This phase is performed at the point of care using a decision module
(dashed line box) that processes the patient data and mined knowledge encoded in phase
2. The decision module parses and accesses the HL7 message containing patient data. The
knowledge is then accessed from PMML documents and is applied on the patient data.
The result of this application is encoded as an HL7 message to be used and interpreted
by the CDSS.

Phase 4 – Interpretation. This phase is also performed at the point of care. The results of
application of mined knowledge on patient data are accessed to influence the decision-
making process of the CDSS.
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Activities Performer

Definition of purpose Healthcare researchers
Data collection Healthcare researchers/staff
Data mining Data mining and healthcare researchers
Data interoperability Data modelers and managers
Knowledge interoperability Computer scientists and data mining researchers
Clinical guidelines definition Medical researchers
Clinical guidelines encoding Healthcare informatics experts

Table I. Different activities in the proposed framework and their corresponding performers.

The activities in the framework are carried out in a decentralized and collaborative
healthcare environment in which different stakeholders (i.e., healthcare organizations and
researchers) with diverse knowledge are involved. Hence a clear task separation and description
of activities is required. Table I summarizes different tasks in the proposed framework and
those who will perform them. In the remaining of this paper the phases of the framework are
discussed in greater detail.

4. Knowledge preparation (phase 1)

In phase 1 of the framework (Figure 2) knowledge is extracted in an off-line process by
application of different data mining techniques on a healthcare data collection. The extracted
knowledge may represent interesting facts and trends in the data that can be used to describe
different characteristics of the original dataset, or be used to carry out predictions on new cases
in the future. Three major steps are carried out in this phase, i) data collection, ii) patient
data protection, and iii) data mining operations. Figure 3 illustrates different steps that are
carried out in the preparation phase. The description of these steps follows.

4.1. Data collection

The dataset that is used in the data mining operation is usually compiled from diverse sources
(e.g., existing records in EMR systems, patient questionnaires, and surveys), and contains a
set of data items relevant to the purpose of analysis (e.g., medical records of patients with
specific conditions, selected clinical measurements, or the results of particular laboratory test).
The collected data would then be anonymized as discussed below.

4.2. Patient data privacy

An extremely important concern in healthcare is to protect the patient’s data privacy [35].
Privacy protection laws are currently in effect for this purpose in many countries including

2008; 00:0–0
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Figure 3. Different steps involved in phase 1 of the proposed framework (preparation).

Canada, United States, Europe, and Japan. They strictly regulate the collection, and use of
the patients private data. Before any data collection takes place, the governmental and/or
local healthcare authorities and the ethics board of the involved institutions must ratify the
purpose of the data collection according to the laws that apply.

As a common privacy protection practice, patient identifiers such as name and Social Security
Number are excluded from the collected dataset in an operation known as anonymization.
However, in many cases a person may have several different records in the dataset and removal
of identifiers results in loss of relationships between these data records. To reconnect such
interrelated records, a fast solution is to use local identifiers to label the records prior to
anonymization.

4.3. Knowledge extraction

The data mining step is carried out on the anonymized dataset and produces mined knowledge
in the form of data mining models. This step contains several different activities including
“data selection”, “preprocessing”, “transformation”, “mining operation”, “evaluation”, and
“interpretation” [23]. Data mining models are the data structures that represent the results
of data mining operations. There are several categories of these operations, referred to as
mining techniques. In the following subsections, we briefly describe the major techniques,
(e.g., classification, clustering, and association-rules mining) where each category consists of a
variety of algorithms.

2008; 00:0–0
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Association Rule Support Confidence

SeptoAnterior ⇒ (LAD ≥ 50%) 18% 80%
InferoSeptal ⇒ (RCA ≥ 50%) 12% 65%
InferoLateral ⇒ (LCX ≥ 50%) 20% 53%

Table II. Discovered association rules in mining of heart disease data [32].

In our framework, we don’t differentiate between different implementations and algorithms
of data mining techniques, as far as their results are representable by the general concepts of the
corresponding data mining type. For instance, different association rules discovery algorithms
take different approaches in extracting the frequent item sets and opt to choose different
measures to exclude intermediary sets and hence prevent explosion in the results set. Some
may refine the set based on standard constraints of support and confidence, others may apply
additional constraints on the size of the rules’ antecedent and consequent.

4.4. Data mining applications in healthcare

Healthcare data mining analysis produces valuable knowledge that can be used for decision
making. Various types of mining models (e.g., clustering, classification, and association rules)
can be used to represent interesting facts and hidden patterns and trends in clinical datasets
with numerous applications in medical practice. In this subsection we briefly review some of
the applications of data mining in healthcare from the literature.

Churilov et al. [18] describe a clustering method using an optimization approach to extract
risk grouping rules for prostate cancer patients. The data record fields are the patient’s age,
tumor stage, Gleason score, and PSA level‡. The clustering algorithm generates 10 clusters
that are then grouped to low, intermediate and high risk categories. Ordonez et al. [32] propose
a new algorithm to mine association rules in medical data with additional constraints on the
extracted rules and applies the method for predicting heart disease. Table II illustrates three
association rules among all the generated rules that are of more importance.

A decision tree-based classification approach has been applied to mass spectral data to help
diagnosis of ovarian cancer suspects [33]. While association rule classifiers have been applied
to diagnose breast cancer using digital mammograms [37]; Land et al. use Neural Network
based classification approach for the same purpose [26]. Li et al. [28] discuss the problem of
mining risk patterns in medical data using statistical metrics in the context of an optimal rule
discovery problem and apply the method to find patterns associated with an allergic event for
ACE inhibitors. Association rules mining is also applied over data of human sleep time [27].
Wilson et al. [36] discuss potential uses of data mining techniques in pharmacovigilance to
detect adverse drug reactions. Duch et al. [9] compare various data mining methods supporting

‡In this paper the medical meaning of these fields are not of our interest.
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diagnosis of Melanoma skin cancer. The last study mentioned above, serves as a running case
study that is discussed throughout this paper. In the followings, we briefly discuss three data
mining techniques.

Classification models
A classification algorithm assigns a patient’s data record with specific attributes and attribute-
values to a predefined class. The classification techniques in healthcare can be applied for
diagnostic purposes. Suppose that certain symptoms or laboratory measurements are known
to have a relation with a specific disease. A classification model is built using a set of relevant
attribute-values (records) such as clinical observations or measurements that allows us to
generate different classes representing different categories of records. Then, by comparison of
a new patient’s record with those of patients in different classes, we can determine to which
class the new patient belongs, e.g., determining that “the patient has lung cancer”.

Association rules models
Association rule X ⇒ Y is defined over a set of transactions T where X and Y are sets of items.
In a healthcare setting, the set T can be patients’ clinical records and items can be symptoms,
measurements, observations, or diagnosis corresponding to the patients’ clinical records. Given
S as a set of items, support(S) is defined as the number of transactions in T that contain all
members of the set S. The confidence of a rule X ⇒ Y is defined as support(X∪Y )/support(X),
and the support of this rule is support(X∪Y ). The discovered association rules can show hidden
patterns in the mined dataset. For example, the rule:

{People with a smoking habit} ⇒ {People having heart disease}

with a high confidence signifies that: the number of people with heart disease is high among
people with smoking habit.

Clustering models
Clustering is originated from mathematics, statistics, and numerical analysis [15]. In this
technique the dataset is divided into groups (clusters) of similar records [15]. The clustering
algorithms usually try to group records in a way to maximize a similarity metric between the
members of the cluster. In many cases, closeness is the similarity metric and the aim is to
maximize the cumulative closeness between data records in a cluster. The researchers then
study the properties of the members of the generated clusters.

4.5. Running case study (knowledge extraction)

In this section, we describe a healthcare data mining analysis research from literature that we
have chosen as our case study in this paper. This analysis is performed in order to study the
relationship between the patients’ skin marks and the possibility of presence of skin cancer,
using a classification data mining technique [9]. The classifier is a decision tree that classifies
patients according to their skin marks into four types: Benign, Blue, Suspicious, or Malignant
Melanoma. The data have been collected in the Outpatient Center of Dermatology in Rzeszw,
Poland containing 250 records.

2008; 00:0–0
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Data item Accepted values
Asymmetry Symmetric-spot = 0, 1-axial asymmetry = 1,

2-axial asymmetry = 2
Border Values from 0 to 8
Color (Binary coded) White, Blue, Black, Red, Light brown, Dark

brown
Diversity (Binary coded) Pigment globules, Pigment dots, Branched

strikes, Structureless areas, Pigment network
C − Blue Absent = 0, Present = 1

Table III. Description of the different data items accessed by the decision tree classifier.

C−BLUE

Blue Malignant SuspiciousBenign

absent present

<= 4.85 > 4.85

TDS

TDS

<= 4.85> 5.54

Figure 4. The decision tree classifier for Melanoma skin cancer [9].

The data selection for data mining contains five variables, indicating presence or absence
of C-Blue, asymmetry, border, color, and diversity of the skin cancer’s mark structure. All
the variables except C-Blue are used to calculate an index, called Total Dermatoscopy Score
(TDS) by the following formula:

TDS = 1.3 ∗ Asymmetry + 0.1 ∗ Border + 0.5 ∗ ΣColors + 0.5 ∗ ΣDiversities (1)

The types of the variables have been casted to integer as indicated in Table III. The data mining
operation has been carried out on the calculated TDS index and C-Blue variable to build the
decision tree classifier that is illustrated in Figure 4. We will use this example decision tree in
the following sections as a running case study to explain different activities in our framework
in order to make this classifier available in Clinical Decision Support Systems.
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5. Data and knowledge interoperation (phase 2)

Data and knowledge should be made available for access and use at heterogeneous healthcare
institutions, and this phase ensures interoperability among such software systems.

5.1. Data interoperability

Data interoperability refers to the ability of information systems to interpret data from
heterogeneous sources correctly. Our goal in this research is to make the CDSS interoperable
with heterogeneous patient data sources so that multiple healthcare institutions can benefit
from its use. Data interoperability consists of two different parts, syntactic data interoperability
and semantic data interoperability.

Syntactic data interoperability is the ability of information systems to communicate using
the same terms. This is achieved by adopting shared vocabulary sets uniquely identifying each
term by its code. Several standard vocabulary sets exist that cover different portions of the
medical terminology domain. LOINC (Logical Observation Identifiers Names and Codes) [6],
UMLS (Unified Medical Language System) [10], SNOMED CT (Systematized Nomenclature
of Medicine Clinical Terminology) [8], ICD (International Classification of Diseases) [1], and
MeSH (Medical Subject Headings) [7] are among the most important standards. Alternatively,
a new set can be developed for communication of terms that are not covered in these standards.

Semantic data interoperability refers to the joint ability of the sender and the receiver of data
to share the exact context in which a term is used. In healthcare, there are multiple concepts
that in many cases are referred to by identical terms. For instance suppose that two systems use
the term cough to refer to the general concept of coughing (syntactic data interoperability in
place). If the first system receives this term in a message, it should also be able to understand
what is meant by that, as this term by itself does not convey any useful meanings. Cough
can be sent as “a symptom of a disease”; “an observation in the patient’s historical clinical

2008; 00:0–0
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data”; or even “the cause of death of a person”. It is important that this associated context be
conveyed to the receiver in a proper way so that it can recognize the meaning of the term cough
properly. The realization of semantic interoperability can be achieved using shared standard
data models.

HL7 Standard-based data interoperability
HL7 is an international community of healthcare experts and information scientists col-
laborating to create standards for the exchange, management and integration of electronic
healthcare information. HL7 v3 (version 3) specifies a hierarchy of static information models
to describe information in the healthcare domain. Reference Information Model (RIM) is at the
highest level in the hierarchy. The HL7 messaging process applies object-oriented development
methodology on RIM and its extensions to create messages. Then these standard messages are
used to transfer data between different healthcare systems.

HL7 message refinement process
HL7 methodology uses RIM, HL7-specified vocabulary domains, and HL7 v3 data type
specification and establishes the rules for refining these base standards to specify Message
Types and equivalent structures in v3. The strategy for development of these message types
and their information structures is based upon the consistent application of constraints on
HL7 RIM and HL7 Vocabulary Domains, to create representations that address a specific
healthcare requirement. The different parts of the refinement process are are discussed below.

Domain Message Information Model (D-MIM) is a subset of the RIM that includes a
fully expanded set of class clones, attributes and relationships that are used to create
messages for any particular domain (e.g., accounting and billing, claims, and patient
administration)

Refined Message Information Model (R-MIM) is used to express the information content for
one or more messages within a domain. Each R-MIM is a subset of the D-MIM and
only contains the classes, attributes and associations that are required to compose those
messages.

Hierarchical Message Description (HMD) is a tabular representation of the sequence of
elements (i.e., classes, attributes and associations) represented in an R-MIM. Each HMD
produces a single base message template from which the specific message types are drawn.

Message Type represents a unique set of constraints on message identification that are
presented in different forms such as: grid, table, or spreadsheet.

Our approach
We use a document-based communication approach by adopting the HL7 v3 CDA standard to
encode input patient data and also the output of application of mined knowledge on patient
data (described in detail in phase 3) to achieve semantic data interoperability in our framework.
We shall justify our decision to use CDA as opposed to messages in the CDA vs messages topic
later in this section. CDA documents need to be encapsulated as MIME packages in other
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HL7 message types that support MIME. We chose messages from Medical Record domain to
embed CDA documents carrying patient medical records for our purpose. These messages have
a class Act.text of type ED (Encapsulated Data Type) that is suitable for embedding CDA.
CDA instance is an XML document that conforms to a CDA schema and contains patients’
clinical data. RIM has a large number of classes, relationships, data types, and coded values.
CDA documents make wide use of coded values to present various semantics associated with
clinical terms. For instance, it is possible for a clinical observation to represent “an event that
has happened”, “an objective and goal”, “an intent or a plan”, or “a request to perform” such
an observation. On the other hand, there are various elements to encode different types of
activities or information, e.g., a procedure, administration of medications, inclusion of medical
images in CDA documents, or a patient encounter. To support syntactic data interoperability,
the CDA schema provides mechanisms to specify clinical terms from a vocabulary system that
is shared among the senders and receivers. In our case we used SNOMED.

A message-based interoperability project in healthcare
We are involved in a project with collaboration of an industrial partner and two medical
research groups to integrate a clinical decision support system (CDSS) with a specialist
application taking a message-based communication approach. This is one of the pioneer
projects in integrating healthcare systems in compliance with new HL7 v3 and Canada Health
Infoway standards [3]. COMPETE III Vascular Tracker (C3VT) is a decision support system
that assists physicians to observe and ideally control patients risk factors within the domains
of cardiovascular, diabetes, hypertension, and dyslipidemia diseases. C3VTs database contains
a large body of knowledge gathered by rigorous study of the related literature in compliance
with the internationally accepted methodology known as evidence-based medicine. As a further
step in COMPETE III project, the research group would like to extend its scope by providing
its services to other specialized applications. The expansion of the C3VT capabilities will
take place within a pilot project that will allow C3VT to interoperate with a Cardiac Rehab
Center (CRC) in a different city. In this integration a portion of patient data form CRC is
sent to C3VT, such that the C3VT algorithms can be run on these data and corresponding
recommendations and guidelines are returned to CRC.

Project steps. We have extracted and modeled different use cases and scenarios of the
integrated system. Infoway specifies the set of standard transactions which are required to
perform the selected scenario. The set of additional information to be transferred with each
clinical concept such as dates, requester and performer are defined for high levels of data schema
(such as vital signs, procedure and lab). In the next step, the data schema of the two systems
are mapped to the standard format. In our project, this process resulted in four mapping
files for SNOMED, LOINC, Infoway and HL7 which are finalized in an integrated extended
version. The C3VTs responses (i.e., recommendations and guides) are expressed using HL7
suggestion for CDSS expression. Once these data schemas are mapped to HL7 standards, a
framework is set up to transmit these data between two systems which completes the semantic
interoperability.
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Data and Service mapping process
In order to facilitate the mapping process, initially the C3VT data schema is completely
mapped onto the SNOMED CT. By this mapping, the time required to trim irrelevant clinical
terminology branches based on domain selection is reduced dramatically. Also the knowledge
gained about SNOMED hierarchy through this mapping data schema to SNOMED is necessary
to select the relevant domain from standard documents. The outcome of data mapping process
is a mapping between legacy system data schema; HL7 messages; clinical domain; clinical
terminology system hierarchy; and finally the extracted standard code for legacy data. In this
sample, the Flu shot field from C3VT is mapped onto the ActProfessionalServiceCode domain
and the appropriate message and the specific field of the message is identified. The complete
service mapping is performed in two steps.

First mapping occurs among the standard documents. For example, in order to transfer
the flu-shot information of a patient, we need to use the immunization storyboard in
Infoway[3]. The first mapping, should find the proper transaction; interactions; trigger
events and application roles, that are associated with the immunization storyboard.
The mapping is performed by navigating the Scope and Package Tracking Framework
document.

Second mapping is dedicated to selecting standard transactions that are required to perform
a transaction of the legacy system. In our case study, two transactions are responsible
for recording and retrieving the medical record of a patient. Considering the sections
defined for a patient profile in our system (such as clinical observations and clinical
procedures) we select the appropriate transactions to transfer these data. The Service
Type of the Professional Service Procedure Recordmessage is the selected field to transfer
flu-shot data. The message also contains additional information such as the performer
of the procedure, the reason for procedure request,the person who should be notified of
procedure completion, etc.

Document-based (CDA) vs message-based communication
The input to the CDSS is a subset of fields from a patient’s medical record. CDA is a specialized
domain in HL7 that specifies structure of Clinical Documents and is meant to be used precisely
for such purposes as the transfer of medical records. While HL7 messages are attached to a
control act (trigger event, sending application role, receiving application role etc.), the CDSS
does not care about such context. It only cares about the values of a patient’s clinical variables.
Therefore, using a message-based approach would only add administrative overhead to the
application. Furthermore, each HL7 version 3 message belongs to a domain or sub domain
and serves a very specific purpose. For example, the POLB MT004000UV message type of the
Laboratory domain can only be used to communicate laboratory results data. Therefore, if
we took a message-based approach, we would have had to employ multiple messages just to
provide the input for a single guideline. Since each guideline requires many different inputs,
message types would also vary depending on the guideline. This approach promised to make
the implementation of parsers, message generators, logic modules and even data sources
unnecessarily complicated and a maintenance nightmare, since adding new guidelines would
mean adding a whole set of new messaging implementations. HL7 v3 fulfills all of our messaging
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Figure 6. Data exchange using CDA: data source encodes the data items according to the CDA schema
that is shared with the receiver. At the destination the CDA instance is parsed and validated to access

the data items.

requirements with a minimum overhead and complexity making it an excellent alternative for
our research project.

5.2. Knowledge interoperability

In addition to data, knowledge available in heterogeneous formats should be made available to
our CDSS. For this purpose, knowledge that is deemed appropriate to be used by the CDSS is
encoded in an XML-based standard called PMML (Predictive Model Markup Language) [19]
in an off-line operation.

The PMML specification is developed by Data Management Group (DMG) [5] and is in the
form of an XML schema. It provides a language to encode various types of data mining models,
including clustering, regression, and association rules models. An apparent correspondence
exists between the activities involved in data mining operation (described in Section 4.3) and
different parts of PMML documents. The data items used in the “data selection” activity of
the data mining operation are reflected in the PMML document’s data dictionary. Similarly,
the data processing and transformation are encoded mainly in the transformation dictionary.
Input data transformations are done as part of the data mining process to make the data
suitable for the mining algorithms. Several transformations may be applied in a sequence
in the data mining operation. For correct interpretation and application of the data mining
models, the input data should undergo the same sequence of transformations. For example,
consider discritization of the age attribute to bins of infant, youth, adult, and senior according
to the ranges of [0, 3), [3, 12), [12, 50), and [50, 120]. If the age attribute of the mined data set
is transformed by this transformation then it should also be performed during the application
process.

Moreover the data mining models’ data structures are also encoded along with their mining
specific parameters. For example, an association rules mining model has frequent item sets,
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Figure 7. Analogy between different constituent artifacts for data and knowledge interoperability.

and association rules with support and confidence factors. The results of data mining technique
are also encoded appropriately. The encoding process should preserve different properties
associated with the data mining models discussed in Section 4.3.

Data mining models also require the input values to meet specific constraints, where these
constraints are critical for correct application of the models. As an example the values of a
numerical mining attribute should be within pre-specified valid ranges, or categorical attributes
should not have values outside of the acceptable values set. Also, very often the data input
to the data mining models are physical measurements and hence, careful attention should be
paid in handling of units. We use schematron validation documents to validate CDA instances
that contain the patient data. The validation documents encode the data mining model’s input
data constraints and hence are tightly bound to the data mining model’s PMML document.
These two documents should be ported to the usage site so that the data mining model can
be applied on validated data items.

Even though data and knowledge interoperability address interoperability of different types
of information, however as illustrated in Figure 7 knowledge interoperability artifacts are
closely analogous to those of data interoperability. The PMML instance documents encode the
mined knowledge according to the PMML specification’s XML schema. Similarly, the CDA
instance documents encode actual patients’ data according to the CDA schema. PMML and
CDA schemas are based on HL7 RIM and CWM [29] models, that define the data structures
for healthcare-data and data mining results, respectively.

5.3. Running case study (data and knowledge interoperability)

In this section we continue our case study from phase 1 and provide the details for achieving
data and knowledge interoperability. The data items for the decision tree model have been
identified in Section 4.5 and presented in table III (page 10).

To validate the data items, a schematron document is developed with rules that perform
the required checks according to the data specification which was provided in table III. The
XML code snippet below shows two validation rules. The first rule (lines 3 to 11) defines an
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assertion that checks whether the C-Blue data item (which is a required field for the classifier)
exists in the document or not. The second rule (from line 13 to line 22) checks the validity of
the terms that are used as the value of C-Blue§

<!-- Check for existance of ’C-Blue’ -->1

<pattern name="Check whether the required data elements exist.">2

<rule context="/hl7:ClinicalDocument">3

<assert test="count(hl7:component/hl7:structuredBody/4

hl7:component/hl7:section/hl7:entry[@typeCode=’COMP’]/5

hl7:observation[@moodCode=’EVN’ and @classCode=’OBS’]/6

hl7:code[@code=’1234-5’ and7

@codeSystem=’2.16.840.1.113883.6.2’])=1">8

The required data element ’C-Blue’ does not exist in the input CDA document.9

</assert>10

</rule>11

<!-- Check for validity of the values of ’C-Blue’ -->12

<rule context="/hl7:ClinicalDocument/hl7:component/hl7:structuredBody/13

hl7:component/hl7:section/hl7:entry[@typeCode=’COMP’]/14

hl7:observation[@moodCode=’EVN’ and @classCode=’OBS’]/15

hl7:code[@code=’1234-5’ and @codeSystem=’2.16.840.1.113883.6.2’]">16

<assert test="../hl7:entryRelationship[@typeCode=’COMP’]/17

hl7:observation[(@classCode=’OBS’) and (@moodCode=’EVN’)]/18

hl7:code[(@code=’1234-5-1’ or @code=’1234-5-2’)]">19

Invalid value for ’C-Blue’ data element.20

</assert>21

</rule></pattern>22

The code below illustrates the structure of the decision tree classifier as encoded in the PMML
file. Lines 3 to 7 defines the input and output of the classifier; and encoding of the tree structure
is then followed (lines 8 to 24).

<TreeModel modelName="Decision Tree Model" splitCharacteristic="multiSplit"1

algorithmName="decisionTree" functionName="classification">2

<MiningSchema>3

<MiningField name="TDS" usageType="active"/>4

<MiningField name="C-BLUE" usageType="active"/>5

<MiningField name="DIAG" usageType="predicted"/>6

</MiningSchema>7

<Node score="UNKNOWN">8

<True/>9

<Node score="UNKNOWN">10

<SimplePredicate operator="lessOrEqual" value="4.85" field="TDS"/>11

<Node score="Benign-nevus">12

<SimplePredicate operator="equal" value="absent" field="C-BLUE"/></Node>13

<Node score="Blue-nevus">14

<SimplePredicate operator="equal" value="present" field="C-BLUE"/></Node>15

</Node>16

<Node score="UNKNOWN">17

<SimplePredicate operator="greaterThan"18

§In our locally adopted vocabulary set, 1234-5, 1234-5-1, and 1234-5-2 are respectively the codes for C-Blue,
Present, and Absent. The latter two are the values that C-Blue can have.
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Figure 8. Different steps to apply the mined knowledge on the patient data. The input and output
are encoded as CDA documents to further modularize the application of knowledge from the decision

making process.

value="4.85" field="TDS"/>19

<Node score="Malignant">20

<SimplePredicate operator="greaterThan" value="5.54" field="TDS"/></Node>21

<Node score="Suspicious">22

<SimplePredicate operator="lessOrEqual" value="5.54" field="TDS"/></Node>23

</Node> </Node>24

</TreeModel>25

6. Application (phase 3)

In this phase, the knowledge that is prepared and encoded in PMML documents (in the
previous phases) is applied on the patient data encoded in CDA documents. The application
is performed online at the usage site (i.e., point of care), by a program called decision module
which is part of the CDSS. The decision module’s functionality is provided through a simple
interface, that receives a CDA and outputs a CDA. Figure 8 illustrates the steps of the decision
module. These steps are described below in the order of execution.

1. Accessing data items. The data items in the CDA instance are accessed by an XML
parser. We use XPath expressions [21] for this purpose. XPath is a language for
referencing different locations within an XML document that is parsed by an XPath
engine.

2. Validating input data items. The patient data obtained above are validated using the
validation rules encoded in schematron documents to ensure data mining model specific
constraints are met.
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3. Applying knowledge. A parser component extracts information about the data mining
model, in particular its type, the name of the algorithm used to build it, its data
dictionary (input/output data types), the data transformations, and the structure of
the data mining model from the PMML document. Based on this information, it builds
an internal representation of this structure. Based on the type and technique of mining
model received, the decision module then invokes an appropriate method to apply mining
model on patient data. For example, a decision tree classification model is applied
by invoking a method that traverses the decision tree based on the evaluation of the
conditional expressions between its nodes. The PMML document specifies input and
output data for the model it represents. The decision module uses XPath as specified in
step 1 to extract required inputs from patient data CDA instance.

4. Encoding the results. The output of knowledge application is encoded in a CDA document
to be used by the CDSS. The resulting CDA document in our running case study, for a
patient with TDS<=4.85 and C-BLUE absent will contain a ”diagnosis” node indicating
that the patient has a ”benign” Melanoma cancer.

6.1. Running case study (knowledge application)

A sample XPath expression that accesses the value of the Skin Marks Border data item in the
XML file is provided below, where Skin Marks Border has been encoded as 1234-2 in our own
vocabulary set.

/hl7:ClinicalDocument/hl7:component/hl7:structuredBody/

hl7:component/hl7:section/hl7:entry[@typeCode=’COMP’]/

hl7:observation[@moodCode=’EVN’ and @classCode=’OBS’]/

hl7:code[@code=’1234-2’ and

@codeSystem=’2.16.840.1.113883.6.2’]/../hl7:value/attribute::value

The validation document for our case study was illustrated in Section 5.3. After validation,
the decision module calculates the TDS index according to equation 1. The calculated TDS
index and the C-Blue data item (that is accessed directly from the CDA document) are then
input to the data mining model (as decision tree). The following XML code shows part of the
PMML code that encodes the output classes of the data mining classifier (line 3) as well as
the custom messages that describe them (lines 4 to 6).

<DataField displayName="DIAGNOSIS" dataType="string"1

name="DIAG" isCyclic="0" optype="categorical">2

<Value displayValue="Benign-nevus" property="valid" value="Benign-nevus" >3

<Extension extender="CAS" name="Description"4

value="TDS is low and C-Blue is absent, so the5

result of classification is Benign-nevus."></Extension>6

</Value>7

.....8

</DataField>9
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Figure 9. Top-level view of the modified GLIF3 model. The proposed extension classes are shown in
the shaded area.

7. Interpretation (phase 4)

This phase involves using the outputs of the knowledge application (phase 3) in the context
of Clinical Decision Support Systems. We use flow-based CDSS that uses the Guideline
Interchange Format 3 (GLIF3) as its clinical guideline modeling language. In these systems the
CDSS follows the flow of events encoded using a clinical guideline modeling language. GLIF3
is described briefly in Section 2. In the rest of this section we provide details on our extensions
to enable incorporation of mined knowledge in clinical guidelines.

7.1. Incorporating mined knowledge in clinical guidelines

To incorporate data mining extracted knowledge for clinical decision making, we have adopted
and extended GLIF3 specification. GLIF3 models are defined using five types of steps, which
are nodes in the flow graph. They are as follows: i) decision step is a node in a guideline
model’s flow graph that determines the direction of the flow based on a decision criterion; an
example is the age of the patient which is compared to a specific age as a decision criterion
to direct the flow; ii) action step is a node that performs an action, such as a prompt to the
user to prescribe medications, order tests, retrieve patient’s medical records, or recommend
treatments; iii) synchronization step is used to merge two or more concurrent decision flows
into a single decision flow, such as receiving the lab test report and observing the effectiveness
of the prescribed medication, before continuing to proceed to the next step; iv) branch step
is used to fork and generate two or more concurrent decision making guideline-flows, such as,
ordering a lab test and prescribing medication both at the same time; and v) patient state step
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Function Description

getDocument(String varName,
String location, String docID,
String patientID)

Assigns the content of a CDA document from location to variable
varName. docID, specifies the type of CDA document, and patientID
specifies a patient identifier who the CDA document belongs to.

getDataItem(String varName,
String cdaDoc, String xpath)

Assigns the value at location specified by xpath in the CDA document
cdaDoc, to the variable specified by varName.

setVariable(String varName,
String value)

Assigns the string value specified by value to variable by varName.

evaluateExpression(String
varName, String expr)

Evaluates the logical expression specified by expr and assigns the resulting
value to the variable varName.

decisionModule(String cdaRe-
sult, String cdaInput)

Invokes the decision module specified in the step’s decision module
slot. cdaInput, and cdaInput are the module’s input and output CDA
documents.

alert( String message ) Outputs the message specified by message to the user.

Table IV. The most important functions and corresponding arguments at the computable level of
the extended GLIF3.

is a node in the flow graph that designates a specific patient’s condition, such as presence of
a symptom, previous treatments, or diagnoses.

Figure 9 illustrates the proposed extension to the GLIF3 model that represents the high-
level clinical flow chart constructs. At this level, we defined a new abstract class, namely
Data Mining Entity with an attribute that holds the name of the decision module used for
interpreting the associated data mining model. Two new classes, called Data Mining Decision
Step and Data Mining Action Step are then defined that extend the Data Mining Entity class,
and the Decision Step and Patient Step classes, respectively. These classes add the functionality
that is necessary to access and interpret a data mining model.

At the computable level of the flow-chart we provide a new mechanism to handle data and
decision making logic which is based on the data and knowledge interoperability approaches
that we discussed in phase 2 and 3 of the framework. The top level class, Guideline Step
(and hence its sub-classes) is related to a statement class that is used to invoke pre-defined
functions. These functions manipulate data and variables, apply the mined knowledge from the
knowledge-base, or output the results to the user. The kinds of knowledge a particular step in
the guideline expects to receive is pre-defined. Therefore it is equipped with the logic to handle
that input. As the flow arrives at a step, the functions specified in that step are invoked and
the related actions are performed. For example at a decision step different options (i.e., the
following steps) are presented to the user. This enables the user to make the final decision and
decide which path the flow should go to. Table IV summarizes the most important functions
at the computable level of the extended GLIF3.

7.2. Running case study (interpretation of data and knowledge)

Continuing with our case study from Section 6.1 where we applied the mined knowledge on
the patient data, in this section we demonstrate parts of a guideline model that was developed
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Figure 10. A portion of the guideline model for Melanoma skin cancer classifier at conceptual level.

for the Melanoma skin cancer decision tree classifier. The guideline model at its conceptual
level is illustrated in figure 10 where a decision step and two action steps are used to decide
whether or not the skin cancer exists.

At the Data Mining Decision Step the following functions are encoded to access and retrieve
the required data items as well as running the decision module and providing the results and
available options to the user. In the following code snippet belonging to the decision step, we
retrieve the CDA document at line 2, and read its content in a variable. The variable contains
the XML document and is passed to the decision module at line 4. The results are then stored
in the resultsCdaVar variable. In lines 6 and 7 two variables contain two XPath expressions
for accessing the ”diagnosis”, and diagnosis description from the CDA results document. Thus
At lines 9 and 10, we retrieve the data values associated with the XPath expressions from the
CDA results document stored in the resultsCdaVar variable. Finally, a message is provided to
the user at line 12 detailing the results of the Melanoma skin cancer classifier.

8. The guideline execution environment

There are basically two approaches in executing a guideline model [34]. In the first approach, a
new software is built for each individual guideline instance that implements the guideline flow
as specified by the interconnection of the steps. This approach has many drawbacks including
re-developing a large portion of the functionalities. Also, small changes in the model may
require considerable recoding. Hence, necessary flexibility is obviously missing and therefore,
this is not considered as a favorable approach.

On the other hand, we can think of an environment with an engine that receives a guideline
model as input and interprets the model according to its specification. In this environment, we
define a set of software modules that are responsible for performing the necessary actions as
determined by the guideline model. The environment’s execution engine is capable to follow the
guideline model and invoke the corresponding modules. During the execution of the guideline,
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1 //Read content of CDA document containing the required data items into cdaVar variable
2 getDocument(cdaVar, "/data-repository", "skin-tests", "Reza Sherafat")

3 //Execute the decision module and store the result CDA document in resultCdaVar

4 decisionModule(resultCdaVar, $cdaVar)

5 //Define variables to hold the XPath expressions referencing the result of the classification
6 setVariable(DiagnosisXpath, "/hl7:ClinicalDocument/hl7:component/hl7:structuredBody/

hl7:component/hl7:section/code[@code=’1292’ and @codeSystem=’2.16.840.1.113883.6.2’]/

../hl7:entry[@typeCode=’COMP’]/observation[@classCode=’ALRT’ and @moodCode=’INT’]/

code/attribute::code")

7 setVariable(DiagnosisDescriptionXpath,

"/hl7:ClinicalDocument/hl7:component/hl7:structuredBody/hl7:component/hl7:section/

code[@code=’1292’ and @codeSystem=’2.16.840.1.113883.6.2’]/../hl7:text")

8 //Retrieve the classification result from the results CDA document
9 getDataItem(resultVar1, $resultCdaVar, $DiagnosisXpath)

10 getDataItem(resultVar2, $resultCdaVar, $DiagnosisDescriptionXpath)

11 //Output a message to the user with the content of the classification
12 alert("Output of the Melanoma skin cancer classifier is $resultsVar1.

Descriptions follow. Please select an option to continue: $resultsVar2")

the environment keeps track of the guideline’s execution flow and provides the required data
retrieval and knowledge interpretation facilities.

We adopted the second approach and implemented an environment and an execution engine
to automatically interpret and execute a clinical guideline that has been defined according
to the specification that we described in Section 7. In our implementation of the guidelines
execution environment, we have developed a plug-in in the Protégé [4] ontology editor tool.
GLIF3 modeling constructs are represented as ontology¶ classes, where guideline authoring is
carried out through graph widgets of Protégé and using the classes that we defined and were
described in the previous section.

The environment allows multiple guideline models to be defined and the user can select a
guideline for execution from a list. An instance of the engine is then instantiated to execute
the selected guideline model. Execution is started from the initial step and continues along
the links that connect different steps. The engine supports multiple flows of execution for
each running guideline, since individual flows can fork at branch steps. Each flow points to a
guideline step as its active step. Active steps are executed by the engine upon arrival of the
flow to that step. After execution of a step and providing the user with the outputs, the engine
waits for the user to signal continuation of the flow to the next step. At this point, the engine

¶An ontology in general refers to a collection of concepts and their relationships in different representations in
a domain. In the context of this paper, the medical data and concepts of the GLIF3 guidelines are defined as
an ontology.
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retrieves the next step from the ontology model, updates the signaled flow, and executes the
new active step.

The decision modules are implemented in Java and are run wherever the decisionModule
function is invoked within a Data Mining Decision Step or Data Mining Action Step of a
guideline model. They are implemented using the XELOPES library [12] and access locally
stored PMML files that contain the corresponding data mining model. As described in Section
6 the output of the decision module is also encoded as a CDA document.

9. Other case studies

We have also worked on the application of our data and knowledge interoperability framework
on other clinical data mining studies from the literature.

The following case study is an association rule mining analysis [32] that was briefly
introduced in Section 4.4. This study was carried out on 665 data records each having 25
selected attributes including heart’s perfusion measurements, heart vessels disease, and the
heart disease risk factors (e.g., age, sex, smoking habit, and cholesterol level). The data mining
model (i.e., a set of association rules) is extracted in the knowledge extraction phase and
some of the rules are illustrated in Table II where LM, LAD, LCX, and RCA refer to heart
vessels’ narrowing measurements. In the interoperation phase, we adopt CDA schemas that
can encode the data items defined in this model. Also, we encode the mined knowledge as
a PMML document, and the constraints on its input data items as rules in a schematron
document. A portion of the encoded PMML model is provided in the following code snippet‖

<AssociationRule id=’1’ support=’0.18’ confidence=’0.80’ antecedent=’1’ consequent=’4’/>

<AssociationRule id=’2’ support=’0.12’ confidence=’0.66’ antecedent=’2’ consequent=’5’/>

<AssociationRule id=’3’ support=’0.20’ confidence=’0.53’ antecedent=’3’ consequent=’6’/>

In the knowledge application phase, the decision module accesses the data items from the CDA
instances, validates them against the data mining model’s data constraints, and applies the
knowledge. Application is performed by matching the antecedent of the rules with the input
data and providing the consequent, support, and confidence of the triggered rules as the result.
This result along with the associated custom tags are encoded in a CDA document to be used
in the guideline flow. The CDSS running the clinical guideline will then access the output CDA
instance and provide the user with the results. These results help the practitioner to gain more
insight into the clinical situation, and potentially improves her medical practice.

Similarly, the following case study is a data mining analysis found in the literature on
association between pre-term births and antidepressants, drugs, alcohol and nicotine. The
study has identified effects of taking these substances at various stages of pregnancy and

‖Values of the ‘antecedent’ and ‘consequent’ refer to identifiers associated with each discovered frequent
item set. These are encoded in a separate part of the PMML document that is not shown.
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Association Rule Support Confidence

Exposure to sedative medicine and tobacco 10% 26%
before pregnancy ⇒ (pre − term birth)

Exposure to sedative medicine 10% 22%
before pregnancy ⇒ (pre − term birth)

Exposure to sedative medicine and anti − depressant 5% 21%
before or during pregnancy ⇒ (pre − term birth)

Exposure to sedative medicine and tobacco 13% 17%
during pregnancy ⇒ (pre − term birth)

Table V. Discovered association rules in mining of data on substance, anti-depressant and sedative
use during pregnancy [17].

Data Mining Method Clinical Variables Use in CDSS

Classification Asymetry, Border, Color, diagnosis of cancer
Diversity, C − Blue

Association heart region condition, predict risk of
heart valve condition heart disease

Association exposure to anti − depressant, sedative, predict risk of
alcohol, drug, tobacco, pregnancy stage pre − term birth

Table VI. Discovered association rules in mining of heart disease data [32].

predicts risk percentage for pre-term birth. The study was carried out on 6231 records with
7 selected attributes and yielded 13 rules. Table V illustrates some of the prominent rules
discovered. By incorporating the discovered rules into a CDSS, physicians can identify patients
who are at higher risk for pre-term birth and take necessary steps accordingly.

The PMML encoding for some of the rules discovered is as follows:

<AssociationRule support=".10" confidence=".222" antecedent="4" consequent="14" />

<AssociationRule support=".10" confidence=".261" antecedent="5" consequent="14" />

<AssociationRule support=".05" confidence=".214" antecedent="6" consequent="14" />

<AssociationRule support=".13" confidence=".174" antecedent="8" consequent="14" />

Table VI offers a comparative analysis of the three case studies introduced in this paper
with respect to the data mining method employed, clinical variables involved and potential
practical use of incorporating the resulting rules into CDSS.

2008; 00:0–0



26 R. SHERAFAT KAZEMZADEH AND K. SARTIPI

10. Conclusion

In this paper we described a novel framework for dissemination and application of the data
and mined knowledge among the heterogeneous healthcare information systems. For data
interoperability, we used HL7 CDA schema to define the required structure for encoding
patients’ health related data. We used schematron documents to define validation rules that
perform consistency checks on CDA document instances. The healthcare researchers extract
mined knowledge by mining existing healthcare data in an off-line operation and store in
proprietary databases. In this context, we used the PMML specification to encode the produced
mined knowledge to achieve knowledge interoperability between sources of knowledge and
their users. To our best knowledge, there has been no methodology prior to this research
to make this type of knowledge portable and available at the application sites. Further on,
decision modules will access patient data from CDA documents and supply them into the data
mining models from the PMML documents. The results of this operation are also provided
as CDA documents to allow interoperability of the results. Moreover, we utilized the mined
knowledge in our proposed extension to the GLIF3 clinical guideline modeling language that
provides recommendations and warnings to the healthcare personnel based on the results of
knowledge application. We demonstrated the application of our framework on case studies
from the literature. We also described a prototype tool that has been implemented.

The approach taken in this research represents the mined knowledge as PMML models
which are self-describing XML documents. The research should continue to examine the
incorporation of the results of different types of data mining techniques. Fortunately, the
database and data mining communities have been active in recent years to define and extend
the PMML specification to a variety of different types of models, as well as developing libraries
to implement different algorithms. Our research is focused on an application area of data mining
results in the healthcare domain rather than the knowledge extraction process.

However, we note that there are still many obstacles that have to be taken care of. Before
a Clinical Decision Support System can be deployed in a real world healthcare environment,
it must undergo rigorous evaluations and tests to ensure high quality decision making and
safety. The knowledge-base content, the system, and its processes need careful attention.
Finally, we argue that this work provides the required methodology for research teams in data
mining, healthcare standardization, and computer scientists to seek a collaborative healthcare
environment where the data and knowledge are disseminated and utilized to improve the
current state of healthcare services.
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