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Software system analysis for identifying software functionality in source code remains as a
major problem in the reverse engineering literature. The early approaches for extracting
software functionality mainly relied on static properties of software system. However
the static approaches by nature suffer from the lack of semantic and hence are not

appropriate for this task. This paper presents a novel technique for dynamic analysis of
software systems to identify the implementation of certain software functionality known
as software features. In the proposed approach, a specific feature is shared by a number of
task scenarios that are applied on the software system to generate execution traces. The
application of a sequential pattern mining technique on the generated execution traces
allows us to extract execution patterns that reveal the specific feature functionality. In
a further step, the extracted execution patterns are distributed over a concept lattice to
separate feature-specific group of functions from commonly used group of functions. The
use of lattice also allows for identifying a family of closely related features in the source
code. Moreover, in this work we provide a set of metrics for evaluating the structural
merits of the software system such as component cohesion and functional scattering.
We have implemented a prototype toolkit and experimented with two case studies Xfig
drawing tool and Pine email client with very promising results.

Keywords: Sequential Pattern Mining; Feature Extraction; Execution Trace; Scenario
Analysis.

1. Introduction

There is a growing attention towards the dynamic aspects of software systems as

a challenging domain in the software reverse engineering [27, 14]. Dynamic analysis

deals with task scenarios that formulate the user-system interactions in an informal

or semi-formal manner. The approaches to dynamic analysis cover areas such as
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performance optimization [25], software execution visualization [23], and feature to

code assignment [13], where in this work we address the latter problem. Typically,

to understand the implementation of a certain feature of a system, maintainers refer

to the documentation of the software system which is tedious and is not applicable

in many cases. In this paper, we propose a novel approach to dynamic analysis of

software systems, in order to identify the implementation of the software features

without any prior knowledge about its source code implementation. In this context,

dynamic analysis is performed by executing a group of well-defined task scenarios on

the software system and by analyzing the execution results. Dynamic analysis with

its characteristics to extract system functionality has several challenges compared

to the static analysis: i) in static analysis usually a complete set of software facts

are generated through parsing or lexical analysis of the source code based on a

domain model, whereas in dynamic analysis only a small subset of the possible

dynamic traces are extracted; ii) obtaining meaningful knowledge from the extracted

execution traces is a difficult task that restricts the applicability of the dynamic

analysis; and iii) the large sizes of the execution traces caused by program loops

and recursions may disable the whole dynamic analysis.

In this work, we define a set of task scenarios with a specific shared feature and

execute them on the software system in order to generate execution traces. The ap-

plication of a sequential pattern mining algorithm on the extracted execution traces

allows us to obtain highly frequent sequence-patterns (or patterns) of functions. In

a further step, we analyze the frequently appearing patterns, in order to identify

the implementation of the software features in the source code. Finally, in a post-

processing step we separate the more general patterns (e.g., starting/terminating

operations and common utility functions) from feature-specific patterns.

Upon identifying the implementation of a certain software feature (i.e., the group

of feature-specific functions), we assess the impact of the feature on a portion of soft-

ware structure that contributes to implement this feature. The proposed structural

assessment directly represents the cohesion of module(s) implementing a specific

feature; this measure of cohesion is much closer to the original definition of cohe-

sion (“relative functional strength of a module” [24]) than using static structural

techniques such as inter-/intra-edge connectivity of the components. Furthermore,

each group of core functions that implement a feature can be used to incorporate

semantics into the existing software architecture recovery techniques [29].

This paper has been organized as follows. Related work is discussed in section

2. Section 3 briefly presents the proposed framework. Section 4 provides formal

definitions for the proposed approach. Sections 5 to 7 discuss three stages of the

proposed framework, as: execution trace extraction, execution pattern mining, and

pattern analysis, respectively. Section 8 provides an overview of the proposed struc-

tural evaluation metrics. Section 9 presents the results of experimentation on Xfig

drawing tool and Pine email system. Finally, section 10 concludes the paper and

provides guidelines for the future research.
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2. Related Work

In this section, we briefly present the approaches in dynamic analysis of a software

system that relate to our work. First, we describe the approaches in software re-

verse engineering that employ data mining techniques. Then, existing approaches to

application of concept lattice analysis in this field is discussed. Finally, we present

recent approaches in dynamic analysis of software systems. Due to space limita-

tion, it is not possible to present all important related approaches in different fields

covered by this paper.

In dynamic analysis of software systems, El-Ramly et al. [15] applied a sequential

pattern mining technique to identify interaction patterns between graphical user in-

terface components. Their algorithm, so-called IPM, discovers frequently occurring

patterns in program’s interface snapshots. Consequently, an expert translates the

extracted patterns to a use-case scenario. In [38] a web-mining technique is applied

on program dynamic call graphs, where nodes represent classes and edges represent

method invocation. In this approach, classes (nodes) that depend on many other

classes are identified using the web mining algorithm HITS. As a result, the classes

in the software system that play an active role in the system are identified. In this

paper we use data mining algorithm sequential pattern mining in order to extract

frequent patterns of function calls.

Concept lattice analysis provides a visualization means to identify maximum-size

groups of objects that have common attributes [17]. In 1993, work on the application

of concept lattice analysis in the area of reverse engineering was initiated. Concept

lattice analysis has been used for modularization of legacy code [32, 21, 34], where

the relation between program functions and their attribute values (e.g., global vari-

ables, used types) are the basis for concept construction. Recently, the application

of concept lattice in dynamic analysis of software systems has been investigated.

Eisenbarth, Koschke and Simon [13, 14] proposed a formal concept lattice analysis

to locate computational units that implement a certain feature of the software sys-

tem. They define a relation between task scenarios and program functions, where

all the functions that are invoked during execution of a task scenario are considered

as the attributes of that scenario. Similarly, we apply concept lattice analysis to the

relation between specific feature in a scenario and certain program functions invoked

during the scenario execution. Tonellan et al. [33] applied concept lattice analysis

on execution traces of a software system to mine the potential program-aspects that

exist in the software.

A typical approach to dynamic analysis of a software systems is based on execut-

ing a set of task scenarios on the software system and analyzing the corresponding

execution traces. In [8, 16] Bell and Ernst studied the characteristics of dynamic

analysis of software systems and compared the properties of dynamic analysis tech-

nique with those of a static analysis. In an approach to software understanding using

execution traces Pauw et al. [23] visualized the execution traces of object-oriented

programs and provided a set of navigational and analytical techniques to facilitate
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the execution trace exploration in various abstraction levels. Fischer et al. [39] used

execution traces as clues for tracing the evolution of a software system. In [40] a

heuristic exploration to execution traces has been proposed that aims at clustering

the program functions based on their invocation frequency. Execution traces are

also used in performance analysis of software systems. In [22, 36, 10] performance

analysis of parallel systems is studied by using execution traces of the software

systems. In [10, 36] a program’s execution trace is searched for certain predefined

patterns that indicate inefficient behavior. In [12] a time interval analysis is applied

to the execution traces to locate components that implement a certain feature in a

distributed application. Traces of execution within the intervals with and without

a specific feature being active are compared to locate the code component that im-

plement that specific feature. N. Wilde et al. [35] proposed a set difference approach

for locating software features in the source code, where the set of functions in the

related scenario executions (those that execute a specific feature) are differentiated

from scenario executions that do not invoke that specific feature in order to extract

the specific feature’s functionality. In our approach, we also use the notion of feature

specific scenarios, however we extract patterns of execution traces as evidences of

the feature functionality.

A major challenge in the trace-based dynamic analysis approaches would oc-

cur right at the beginning of the analysis, that is managing very large traces

[20, 30, 39]. Hamou-Lhadj and Lethbridge [19] provide a framework to compress

the execution traces by removing loop-based redundancies, where the process is

reversible. The method is based on identifying identical sub-trees in the dynamic

tree that is generated from an execution trace. We also use a similar technique to

remove the loop-related redundancies. Reiss and Renieris [26] propose a set of trace

compaction techniques including string compaction, dynamic call graph analysis,

grammar-based encoding and finite state automata. Greevy and Ducasse [18] ex-

tract execution traces to generate a mapping between software features and classes

by comparing the classes that generate the execution trace for different features.

Our approach in this paper exploits an analysis technique to handle large sizes

of the execution traces, and allows an intuitive and promising process of feature to

component allocation that consequently leads us to measure the functional scatter-

ing and cohesiveness of the software structural units.

3. Proposed Framework

Figure 1 illustrates different steps of the proposed framework for assigning software

features onto its source code. The framework provides means for reducing the large

sizes of execution traces, takes advantage of the relation discovery power of data

mining and concept lattice analysis, and allows to measure the impact of individ-

ual features on the structure of the system. This process consists of four stages:

Execution trace extraction; Execution pattern mining; Execution pattern analysis;

and Structural evaluation. In the remaining of this section these stages are briefly
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Fig. 1. Proposed framework for identifying the implementation of the functional aspects of a
software system in the source code as a means to measure the structural impacts of different
software features.

described.

Stage 1. Execution trace extraction: important features of a software system are

identified by investigating the system’s user manual, on-line help, similar systems in

the corresponding application domain, and also user’s familiarity with the system.

A set of relevant task scenarios are selected that examine a single software feature.

We call this set of scenarios as feature-specific scenario set. For example, in the

case of a drawing tool software system, a group of scenarios that share the “move”

operation to move a figure on the computer screen would constitute such a feature-

specific scenario set. In the next step, the software under study is instrumenteda

to generate function names at the entrance and exit of a function execution. By

running each feature-specific scenario against the instrumented software system a

sequence of function invocations are generated in the form of entry/exit pairs. To

make the large size of the generated traces manageable, in a pre-processing step we

transform the extracted entry/exit listing into a sequence of function invocations

and also remove all redundant function calls caused by the cycles of the program

loops. The pruned execution traces are then fed into the execution pattern mining

engine in the next stage. The pre-processing operation will be discussed in more

details in Section 5.

aInstrumentation refers to the process of inserting particular pieces of code into the software
system (source code or binary image) to generate a trace of the software execution.
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Stage 2. Execution pattern mining: in this stage, we reveal the common se-

quences of function invocations that exist within the different executions of a pro-

gram that correspond to a set of task scenarios. Each execution pattern is a can-

didate group of functions that implement a common feature within a scenario set.

We apply a sequential pattern mining algorithm on the execution traces to discover

such hidden execution patterns and store them in a pattern repository for further

analysis. This stage will be discussed in more details in Section 6.

Stage 3. Execution pattern analysis: even in one feature-specific scenario set,

a large group of execution patterns are generated that must be organized and some

must be filtered out to identify core functions of a feature. We employ two different

mechanisms for this purpose: concept lattice analysis and second sequential pattern

mining technique (the latter is not discussed in this paper). We use concept lat-

tice analysis to cluster the group of functions in extracted patterns that exclusively

correspond to a shared feature of a scenario set, and also to cluster the group of

functions in patterns that are common to every scenario set. This stage is discussed

in Section 7.

Stage 4. Structural evaluation: in a further operation, by associating the feature-

specific functions to the system’s structural modules (i.e., files of the system) two

metrics are defined, namely structural cohesion and functional scattering that to-

gether provide a means for measuring the impact of individual features on the

structure of the software system.

4. Formal definition of the approach

In this section, we define the common terminology that we use throughout this

paper to describe the execution pattern mining and pattern analysis aspects of the

proposed approach.

We use Z notation [37] to formally define the concepts in this section. In the Z

notation, a “set” can be defined as {D | P • E} denoting a set of values consisting of

all values of the term E for the declared variables in D that satisfy the constraint P .

The predicate P and term E contain the free variables defined in D. For example,

{x : N | x ≤ 5 • x2} denotes the set {1, 4, 9, 16, 25}. The term E and its preceding

“heavy dot” can be omitted which results {x : N | x ≤ 5} = {1, 2, 3, 4, 5}.

The existential quantifier “∃” is used to define a new variable. The general form

of the existential quantifier is ∃D | P • Q where D represents declarations, P

represents a predicate acting as the constraint and Q represents the predicate being

quantified. The constraint bar “|” and the constraining predicate P can be omitted,

which results: ∃D • Q.

The universal quantifier “∀” is used to define all variables that have certain

properties. The general form of the universal quantifier is ∀D | P • Q. The constraint

bar “|” and the constraining predicate P can be omitted, which results: ∀D • Q.

6



September 13, 2009 0:39 WSPC/INSTRUCTION FILE jDynamic

• Feature φi corresponds to a single functionality (number i) that is provided

by the subject software system; and Φ is the set of all available features.

• Scenario sj is a sequence of features φi ∈ Φ; hence sj = [φj1, φj2, . . . , φjn].

Also S is the set of all applicable scenarios on the system.

• Feature-specific scenario set Sφi
is a set of scenarios sj ’s that use specific

feature φi; such that Sφi
= {sj | sj ∈ S ∧ φi ∈ sj}.

In this model, the execution of a scenario sj on the subject software system

is represented by a traversal of the software’s static call graph, where each tree

traversal generates a dynamic call tree dctj that is defined below.

• Let F be the set of all function names in the subject software system.

• Dynamic Call Tree dctj =< F ′, E > is a tree where the set of nodes F ′

represents different invocationsb of functions f ∈ F , and E ⊂ F ′ × F ′

represents the set of edges among function invocations.

• Dynamic Software System Ψ models the subject software system as a set

of all possible dynamic call trees dctj ’s that are generated by the execution

of task scenarios sj ∈ S on the subject software system. We also model a

scenario execution E(sj) on the subject software system as a look up oper-

ation which returns the corresponding dynamic call tree of the scenario sj ,

hence E : S → Ψ.

For simplicity and without loss of generality, we use Ψ to represent only

dynamic call trees that correspond to a group of k feature-specific scenario

sets that are represented by “the restricted S” as S =
⋃

i=[1..k]Sφi
. This

means the subject software system Ψ can only execute the intended k sce-

nario sets, not all possible scenarios.

• Preprocessor Π : Ψ → T is a tree pruning and serialization operation,

where: i) replaces multiple instances of identical subtrees (i.e., repeated

under a particular parent node) in a dynamic call tree dctj , with one of

those instances; and ii) maps the loop-free dctj to an execution trace tj ∈ T

using a depth first traversal operation on the dynamic tree dctj , where the

sequence of visited nodes in this traversal constitute execution trace tj . In

this form, T represents the set of all traces tj that are stored in a repository

to be used for execution pattern generation process; and Tφi
represents

feature specific traces that correspond to scenario set Sφi
. Hence:

Tφi
= {t | ∀sj ∈ Sφi

• t = Π(E(sj))}

T =
⋃

i=[1..k] Tφi

• Execution pattern px is defined as a subsequence of a trace t (i.e., a contigu-

ous sequence of functions f within trace t) that is supportedc by at least

bIn this context, two different invocations of a single function f ∈ F are represented as f i, fj ∈ F ′

(i 6= j).
cpx exists in certain number of execution traces tj ’s, where the collection of tj ’s are called the
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MinSupport number of execution traces in T ; where the support of execu-

tion pattern px is defined below. Also, P is the set of all execution patterns

px.

sup(px, T ) = {t | t ∈ T ∧∃i ≥ 0 | ∀j (i ≤ j < (i+|px|) → px[j−i] = t[j])}.

• Execution pattern miner Υ(T , n) is a function which receives the set of

execution traces T and MinSupport n, and returns all execution patterns

px ∈ P that exist in at least n execution traces t’s in T .

Υ(T , n) = {p | subSeq(p, t) ∧ t ∈ T ∧ |sup(p, T )| ≥ n} ≡ P .

Depending on the level that functions are participated in execution patterns of

different feature-specific scenario sets, we define two categories of functions: feature-

specific functions and common functions as follows.

• Fφi
is a set of feature-specific functions that are used to implement specific

feature φi.

Fφi
= {f | f ∈ p ∧ p ∈ Υ(Tφi

, n) ∧ n = |Sφi
| }

• Fcom is the set of common functions that exist in the extracted patterns

of almost every feature-specific scenario set.

Fcom = {f | f ∈ p ∧ p ∈ Υ(T , n) ∧ n ≈
∑

i=[1..k] |Sφi
| }

Based on the above definitions, we present the details about different stages of

the proposed dynamic analysis framework in Section 3. These activities are sum-

marized below.

(1) Execute k different feature-specific scenario sets Sφi
(i ∈ [1..k]) on the subject

software system and generate the corresponding dynamic call trees Ψ.

(2) Preprocess the dynamic call trees in Ψ in order to eliminate the loop-based

repetitions and generate feature specific execution traces Tφi
(and consequently

all execution traces T ).

(3) Apply execution pattern miner on Tφi
’s (i ∈ [1..k]) to extract k sets of feature-

specific patterns Υ(Tφi
, n).

(4) Apply concept lattice analysis on functions of different patterns in all Υ(Tφi
, n)’s

in order to separate feature-specific functions Fφi
from common functions

Fcom.

(5) Finally, study the impact of the implemented features on the structure of the

system.

support of the pattern px.
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5. Execution trace extraction (stage 1)

In order to run different scenario sets on the subject software system, we need to

instrument the system. We adopt Aprobe [4] which is a binary level software in-

strumentation tool to insert patches, namely probes, within the binary image of

the executable program. We use a pre-defined probe (namely trace) which gener-

ates text messages at both entrance and exit of each function. Consequently by

running the selected feature-specific scenario sets we obtain entry/exit listings that

are transformed into dynamic call trees in a further step. For space limitation this

transformation is not discussed in this paper. This step that represents E : S → Ψ

generates different groups of dynamic call trees corresponding to different scenario

sets that should be pre-processed and converted to the execution traces for the ex-

ecution pattern analysis.

Pre-processing. The preprocessor Π : Ψ → T is a dynamic call tree prun-

ing and trace serialization operation. Dynamic analysis of a medium size software

system using execution traces can produce very large traces ranging to thousands

or tens of thousands of function calls. This would be a main source of difficulty

in a dynamic analysis. The effective trace of functions corresponding to a scenario

execution is cluttered by a large number of function calls from operating system,

initialization and termination operations, utilities, repetition of sequences caused

by the loops, and also noise functions that are interleaved within a call sequence. In

this work, we ignore recursive function traces and focus on pruning the loop-based

redundancies.

We transform the entry/exit listing that is generated by executing a task sce-

nario on the software system into a dynamic call tree where nodes represent func-

tions and edges represent function calls. Since each loop resides in the body of a

function, the loops will form identical subtrees as the children of the parent function.

We also assign an integer ID to each tree node, where roots of identical subtrees

posses identical IDs. This technique significantly simplifies the task of localizing

and eliminating the loop-based redundancies at proper children of each node in the

dynamic call tree. Therefore, the loop redundancy removal problem is reduced to

identification of identical subtrees that are repeated under a particular node.

Figure 2(a) shows Procedure Foo that produces a long trace with repetitions

of “F1, F2”. Figure 2(b) illustrates a small portion of a dynamic call tree that is

generated from an execution of the Procedure Foo. Furthermore, each node in this

dynamic call tree is annotated with its ID. Note that functions F1 and F2 are called

several times by function Foo, hence they acquire different IDs depending on their

run-time behavior.

The pruning process is as follows: i) Generate a string representation of ID’s from

different sibling subtrees. ii) Apply a repetitive string finder algorithm (Crochemore

[11]) to transform the original string (with repetitions) into a new string with no

repetitions. iii) In the new string, each group of repetitions is shown as one instance

9
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8 8 88

7777
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9

6

5

4

F20

F21 F22

F23

13 14

15

12begin
....

While condition  do
Call F1;
Call F2;

end

Call F1;

....
end Repetitions are replaced

by one sub−tree

(While loop)

(b)

. 

Fig. 2. (a) A dummy procedure which generates loop-based repetition. (b) Dynamic call tree
generated from an execution of Procedure Foo.

. . ., Foo, F1, F1, F2, F1, F2, . . ., F1, F2, . . . . . . , F oo, F1, (F1, F2)n, . . . . . . , F oo, (F1)2 , (F2, F1)n−1, F2, . . .

(a) (b) (c)

Fig. 3. (a) A string containing repetitions. (b) Representation of (a) in the form of one instance of
string repetition. (c) Another representation of (a) in the form of one instance of string repetition.

of the repetition that is labeled with the number of the repetitions.

For example, in Figure 3(a) the string F1,F2,F1,F2, ..., F1, F2 is transformed

into (F1,F2)n in Figure 3(b). There may exist more than one pattern of repetitions

for a given string (e.g., strings in Figures 3(b) and (c)) and hence we apply the

following heuristic in order to select the dominant pattern. The repetitive pattern

with the highest power generates a pattern that is resulted from a program loop.

As a result, we keep subtrees corresponding to a single instance of each loop

which greatly reduces the complexity of the dynamic call tree. Finally, by traversing

the loop-free dynamic call tree in a depth-first order and keeping the visited nodes

in a sequence, a loop-free execution trace is generated.

6. Execution pattern mining (stage 2)

In the data mining literature, sequential pattern mining is used to extract frequently

occurring contiguous (or interleaved) sequences of events (known as patterns) among

the sequences of customer transactions [7]. In the proposed approach, we use a

modified version of the original sequential pattern mining algorithm by Agrawal

[7], where an execution pattern is a contiguous part of an execution trace that is

supported by MinSupport number of the execution traces.

The execution pattern miner Υ(Tφi
, n) receives different sets of pruned (loop-

free) feature-specific execution traces Tφi
as well as the MinSupport n for each set,

and generates different sets of execution patterns containing both feature-specific

functions Fφi
and common patterns of functions Fcom.

Figure 4(a) illustrates the application of pattern miner Υ(Tφi
, n) on three sets of

10
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F8, F9, F12
F9, F12

execution patterns

(a) (b)

F12F9F3

F12F8

F9

F8

F9

F12

F12
Execution pattern

SubPattern

SubPattern

F1 & F15

F4, F10     &    F18, F20

F3, F8, F9, F12

Fig. 4. (a) Feature specific scenario sets and their corresponding execution patterns. (b) An ex-
ecution pattern along with its redundant sub-patterns; a trie structure is used to eliminate sub-
patterns during the execution pattern generation.

feature-specific execution traces. As a result, feature-specific and common patterns

are extracted. The noise execution patterns in Figure 4(a) are a kind of common

patterns that are not as frequent as common patterns, and hence are not as impor-

tant as the two main types of patterns. Each feature-specific pattern only exists in

its corresponding traces; common patterns almost exist everywhere; and noise pat-

terns, are those whose frequencies are in the middle. In this example, the functions

that implement each feature are highlighted; also the separation of different types of

patterns is trivially feasible for human. However, for large trace sizes a large number

of patterns of different types are generated whose separation is almost impossible

by human’s inspection.

The pattern miner generates a large number of execution patterns such that the

majority of these patterns are redundant sub-patterns of a large execution pattern

and cause size explosion that significantly increase the computational complexity. In

order to identify and eliminate the sub-patterns of a final execution pattern, we use

a Trie data structured and annotate its nodes with the function names. Figure 4(b)

illustrates a Trie data structure that we use for representing the trace of pattern

functions. Each leaf Trie node can be labeled as final (i.e., an execution pattern) or

subpattern (a redundant pattern) where the latter will be eliminated. In doing so,

the sequence of functions in each execution pattern px is stored along a path from

the root to the leaf of the Trie, and the corresponding leaf is marked “final” if the

sequence does not already exist in the Trie.

7. Execution pattern analysis (stage 3)

We employ a strategy to focus on execution patterns corresponding to a specific

feature within each group of scenario set as well as common patterns that exist in

dA Trie is a binary search tree data structure that stores the information about the contents of
each node in the path from the root to the node.

11
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Fig. 5. Three steps to identify the concepts from a relation.

almost all scenario sets. In the following, the different kinds of functions that exist in

extracted execution patterns along with the corresponding extraction mechanisms

are presented.

Feature-specific functions Fφi
. Feature-specific functions are core functions

that implement the targeted feature φi of a feature-specific scenario set Sφi
. In order

to extract feature-specific functions, we should increase the level of MinSupport n of

the pattern miner Υ(Tφi
, n) to a number that covers the majority of the scenarios

in Sφi
.

Common functions Fcom . Common functions exist in almost every task

scenario of the software system, e.g., software initialization / termination operations,

or mouse tracking. Such functions exist in every execution trace of every scenario-

set Sφi
. Therefore, it is extracted along with the feature-specific function mentioned

above. Given a group of two or more feature-specific scenario sets, each with a

different specific feature, the extracted execution patterns which are shared among

the majority of the scenarios implement the common features of the software system.

In order to extract such functions, we should use a filtering mechanism such as

concept lattice analysis to filter out the feature-specific functions from this group

of functions.

Although each of the above categories may be required in a particular analysis

task, the first category reveals the implementation of the feature that is targeted

by the set of task scenarios and hence is considered as the more relevant type of

dynamic analysis. In the rest of this section, we present a filtering mechanisms to

separate the common functions from feature-specific functions.

7.1. Concept Lattice Analysis

We employ the visualization power of mathematical concept analysis (Birkhoff 1940

[9] and Ganter & Rudolf 1999 [17]) as a strategy to cluster the group of functions

in execution patterns that either: i) exclusively correspond to a shared feature of a

scenario set; or ii) shared among all scenario sets. A formal context is defined as a

triple C = (O,A,R) which represents the relation R between objects O and their

12
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attribute values A. A concept cx is a maximal collection of objects sharing maximal

common attribute-values. Figure 5 illustrates three steps for defining the set of

concepts: (a) context table among objects and their attributes, where maximum

groups of shared features among objects can be identified as maximum group of

X ’s; (b) concept lattice, where each node represents a concept cx; and (c) the list

of concepts, where each concept cx is represented by as a tuple of extent “Ext(cx)”

and intent “Int(cx)”. A concept lattice has the following characteristics:

• Each lattice node (i.e., a concept) may have labels for objects and attributes.

• Every object has all attributes that are defined at that node or above it in the

lattice (directly above or separated by some links).

• Every attribute exists in all objects that are defined at that node and below it

in the lattice (directly below or separated by some links).

In our approach, we present the relation R′ between “set of features Φ” and “set

of functions F” such that C = (Φ,F ,R′). In other words, an object is a targeted

feature φi ∈ Φ of a feature-specific scenario set Sφi
, and an attribute is a function f

that participates in the execution patterns corresponding to Sφi
. Applying concept

lattice analysis to the proposed formal context will result in separation of “feature-

specific functions Fφi
” from “common functions Fcom” as follows.

A concept lattice can be used to collect the set of shared attributes contained in

a set of objects such that the shared attributes appear in the nodes that are located

in the upper region of the lattice. Consequently, the nodes in the lower region of the

lattice collect the attributes that are specific to the individual objects in that region.

We exploit this property to group functions of the extracted execution patterns.

In our case, common functions Fcom are executed through almost every task sce-

nario of the software system; hence these functions cluster in upper region of the

lattice. However, this property also prevents us from distinguishing different groups

of functions that implement different common functionality. On the other hand,

feature-specific functions Fφi
are located in the lower region of the lattice. Conse-

quently, functionality of these functions can be easily identified using the meaning of

the specific feature of the corresponding lattice node. Particularly, a concept whose

extent consists of a single object (feature φi) collects all functions that exclusively

implement that feature.

8. Structural Evaluation of Software System

Software systems are continuously evolving throughout their life time from early

development to their maintenance and retirement. During the maintenance phase

the software system is still changing through activities such as bug-fixing, migra-

tion to new platforms, and adding new features which were not planned from the

beginning. Therefore, even a nicely designed and accurately implemented software

system will probably incur several changes to its functionality and consequently to

its structural design. This common scenario is the main cause of structural dam-

13
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age, high maintenance cost, and eventually retirement of a legacy system. To help

this situation, the task of the software maintainers is to measure the impair on the

structure of the software system and assess the current state of the resulting legacy

system.

One approach to address this problem is to assess the structural merit of the

software system based on the degree of functional scattering of software features

among the structural modules. In this context, the functionality of the system is

represented as a set of features that are implemented within the software modules

and are manifested as constituents of different scenarios to be run on the software

system. In addition, the functional cohesion of each system module can also be

investigated as a means to monitor the healthiness of the software system.

In this section, we provide two metrics to assess the structural merit of the soft-

ware system, namely: functional scattering and structural cohesion. The proposed

functional scattering metric examines the distribution of a set of functions that im-

plement a family of relevant features (could consists of one single feature) over the

structural units (i.e., files) of the system. Hence, it represents the degree of scatter-

ing of the implementation of software features among the structural modules. On

the other hand, the structural cohesion assessment directly represents the cohesion

of module(s) implementing a specific feature based on the functional relatedness of

the functions that reside in each structural unit (module). This measure of cohesion

is much closer to the original definition of cohesion (“relative function strength of

a module” [24]) than using static structural techniques such as inter-/intra-edge

connectivity of the components.

A feature family Φi (also denoted as a logical module) is a set of related features

that posses similar functionality with regard to a single feature φi, i.e., they share

feature-specific functions from Fφi
. In order to measure the functional scattering

of a logical module Φi, we assess the level of distribution of the functions that

correspond to Φi (denoted as FΦi
) over the whole structure of the relevant system

files. Similarly, we compute the structural cohesion of a system file as the level

of relatedness of its functions with respect to the functions in a logical module

i.e., FΦi
. To obtain these metrics, first we identify and collect the functions of the

logical module using the above discussed concept lattice analysis. Then, the source

files that contain these functions are identified and the ratio of shared functions

over the total functions are calculated as follows.

• Let Fl be the set of functions that are defined in file l.

• Let LΦi
= {l1, l2, . . . , lk} be the set of system files that contain all functions of

the logical module Φi (i.e., FΦi
).

• Structural cohesion of file l with respect to logical module (feature family) Φi

is defined as:

SCΦi
(l) =

|Fl ∩ FΦi
|

|Fl|

• Functional scattering of logical module (feature family) Φi is defined based on
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Fig. 6. (a) Feature-specific scenario-set. The group of scenarios apply the “Flip” operation on
different graphical objects. (b) Concept lattice representation of the extracted features and their
corresponding functions for the Xfig drawing tool. The group of concepts (and their functions)
corresponding to three feature families and the common functions are shown by dashed ovals.

the distribution of functions in FΦi
over files in LΦi

as:

FS(Φi) = 1 −

∑
l∈LΦi

SCΦi
(l)

|LΦi
|

A software system with high structural cohesion SCΦi
(l) for its individual files

and low functional scattering FS(Φi) among its files represents a modular system

that requires low maintenance effort. However, a high degree of functional scattering

corresponding to a feature family Φi directly signifies a high structural impair that

is caused by that feature family. Hence the system requires more maintenance effort

to tackle with the consequences of propagated change to other software files.

9. Experiments

In this section, we apply the proposed dynamic analysis technique on two medium-

size open source systems. The developed dynamic analysis tool is an Eclipse plug-in

[2] and has been developed as an extension to the Alborz reverse engineering toolkit

[31] to enhance the scope of Alborz to cover both static and dynamic analysis of a

software system.

9.1. Dynamic Analysis of Xfig

Xfig 3.2.3d [1] is an open source, medium-size (80 KLOC), menu driven, C language

drawing tool under X Window system. Xfig has the ability to interactively draw
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and manipulate graphical objects (circle, ellipse, line, spline, rectangle, and poly-

gon) through operations such as copy, move, delete, edit, scale, and rotate. In the

following we discuss application of the proposed dynamic analysis technique on the

Xfig drawing system, according to the stages of the proposed framework in Section

3. Figure 6(a) illustrates the group of task scenarios that form a feature specific

scenario set, where the flip operation is the specific feature. In this setting, a group

of seven scenarios have been selected that all begin from the start up operation

and finish in the terminate operation. Each scenario has a distinct path within the

Drawing component, but shares the same path (i.e., flip operation) within the Edit-

ing component. We apply the above strategy to generate feature-specific scenario

sets that each target one feature within Figure 7. We execute the scenarios of each

feature-specific scenario set Sφi
on the instrumented Xfig system and obtain the cor-

responding entry/exit listings. After pruning the extracted entry/exit listings from

loop-based function calls we apply the execution pattern mining process to obtain

the patterns of function call sequences. Figure 7 presents the statistics about at-

tributes of a group of feature-specific scenario sets that we used in analyzing Xfig.

This table illustrates a major characteristic of the proposed dynamic analysis with

regard to reducing the scope of the analysis from huge sizes of the execution traces

(Average Trace Size) to the manageable sizes of the execution patterns (Average

Pattern Size).

Concept Lattice Analysis. We supply the resulting execution patterns of the

Xfig experiments to a concept lattice generation tool (concept explorer [3]) in order

to view the distribution of the feature functions on the lattice. As it was discussed

in Section 7.1 the feature-specific functions are clustered around the nodes (con-

cepts) that each represent a specific feature. Similarly, the common function that

are shared among a majority of concepts are clustered at the upper region of the lat-

tice, and hence their common operations can not be distinguished from each other.

The visualization power of the concept lattice will also allow us to cluster the group

the functions of highly related features (i.e., lower region lattice nodes) into feature

families where they present similar behaviors. In Figure 6(b) three dashed circles at

the bottom illustrate the group of concepts and their functions that implement the

core functionality of the feature families of ellipse, copy, and spline. On the other

hand, the upper nodes collect those functions of Xfig corresponding to common

patterns, such as: software initialization and termination, mouse pointer handling,

canvas view updating, and side ruler management.

Structural Evaluation. Based on inspecting the source files of Xfig, we mea-

sure the structural cohesion of corresponding source files, as well as the functionality

scattering of the feature families under study. The results of this evaluation for three

feature families Draw Ellipse, Copy, and Draw Spline are presented in Figure 8.

For the three mentioned feature families we inspect the Xfig source files that
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Feature Specific # Different Average Avg Pruned # Extracted Average
Family Feature of Xfig Scenarios Trace Size Trace Size Patterns Pattern Size

Circle-Diameter 10 7234 2600 46 33
Draw Circle-Radius 10 8143 2463 48 32
Ellipse Ellipse-Diameter 10 6405 2536 41 37

Ellipse-Radius 10 7351 2549 39 35

Move Objects 4 11887 3166 31 53
Copy Copy Objects 4 11460 3269 37 50

Closed Interpolated 10 18635 4434 58 63
Draw Interpolated 10 15469 4038 66 49
Spline Approximated 10 15057 5362 61 47

Scale Center Scale 4 8088 1541 30 47

Flip Flip up-Right 4 7296 1378 29 46

Rotate Rotate Clockwise 4 6974 1544 28 44

Delete Delete Objects 4 6580 1181 19 56

Fig. 7. The result of execution trace extraction and execution pattern mining for a collection of
Xfig feature families and their specific features.

define the functions that implement the corresponding logical module FΦi
of that

feature family. The results of measuring the structural cohesion SCΦi
(l) of these files

are presented in Figure 8. These results indicate that file d ellipse has high cohesion

with respect to logical module of feature family Ellipse; files e copy, and e move are

also highly cohesive with respect to feature family Copy; and finally, file d spline

is cohesive with respect to feature family Spline. However, study of the functional

scattering measures allows us to better interpret the characteristics of these logical

modules. For example, in the case of Ellipse a small portion of the logical module

FΦi
is located in a large file u elastic which results in a high functional scattering

measure. Whereas, in the case of Copy feature family, the logical module almost

covers two files e copy and e move which indicates low scattering.

In the case of Spline, the logical module is almost equally scattered among four

files each covering a small portion of the files and hence indicating high functional

scattering. We also adopt a minimum threshold value of 10% in order to consider

a file in the calculation of the above measurements. The results in Figure 8 are

promising in the sense that they reflect meaningful measures with respect to the

sizes of logical modules and system files shown. Regarding the results of our struc-

tural evaluations, we can predict high maintenance activities regarding any change

to the feature families Ellipse and Spline. However, changes to the Copy feature fam-

ily would not propagate throughout the system which indicates less maintenance

activity is required.

9.2. Dynamic Analysis of Pine Email Client

Pine 4.4.0 [6] is an open source, large-size (207 KLOC), C language email client

for reading, sending, and managing electronic messages. For this case study, we

repeated exactly the same steps we discussed in the study of the Xfig drawing

tool. We examined 4 different features of Pine for: composing emails, managing

the folder lists, address book, and message index. Figure 9 presents the result of

execution traces extraction as well as execution pattern mining for the above 4 Pine

features. By repeating this process and targeting other features of the system with
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Feature Family Contributed |Fl| |Fl ∩ FΦi
| Structural Cohesion Functional Scattering

Φi File (l) SCΦi
(l) FS(Φi)

d ellipse.c 16 12 75%
Ellipse u elastic.c 67 8 12% 57%

e copy.c 5 3 60%
Copy e move.c 4 3 75% 32%

d line.c 9 2 22%
Spline d spline.c 6 5 83%

u bound.c 19 2 11%
u draw.c 75 14 19% 66%

Fig. 8. Structural cohesion and functional scattering measures for three different feature families
of the Xfig (the threshold value for this calculations are chosen as 10%).

Specific # Different Average Average Number of Average
Feature of Pine Scenarios Trace Size Pruned Trace Size Extracted Patterns Pattern Size

Compose 8 90081 24636 95 172

Folder List 4 48335 11205 25 491

Message Index 5 67741 19529 44 345

Address Book 3 59221 16024 71 212

Fig. 9. The result of execution trace extraction and execution pattern mining for a collection of 4
different Pine features.

Feature Family Contributed |Fl| |Fl ∩ FΦi
| Structural Cohesion Functional Scattering

Φi File (l) SCΦi
(l) FS(Φi)

context.c 13 2 16%
bldaddr.c 78 9 12%

Compose send.c 99 57 56%
reply.c 65 12 19% 74%

Folder List folder.c 121 15 12% 88%

adrbklib.c 88 12 14%
Address Book addrbook.c 75 20 27% 80%

Message Index pine/mailview.c 126 21 17% 83%

Fig. 10. Structural cohesion and feature functional scattering measures for four different features
the Pine email client (the threshold value for this calculations are chosen as 10%).

proper sets of scenarios, we could incrementally explore the Pine system’s overall

functionality. By spreading the extracted execution patterns over a concept lattice

we could separate feature-specific functions from common functions that implement

experimented features. Finally, based on inspecting the source code of Pine, we

measured the distribution of functions that implement each examined feature over

the structural units. The results are shown in Figure 10.

For each feature family Φi in Figure 9 we inspected the Pine source files that

define the functions that implement the corresponding logical module FΦi
of that

feature family. The results of measuring the structural cohesion SCΦi
(l) of these

files are presented in Figure 10. These results indicate high degree of scattering

among the examined feature families of Pine. Files context, bldaddr, and reply have

low cohesion with respect to logical module of feature family Compose; file send

shows high cohesion with respect to feature family Compose. However, study of the

functional scattering measures allows us to better interpret the characteristics of

these logical modules. For example, in the case of Compose a portion of the logical

module FΦi
is located in a large file send which results in a high functional scattering
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measure.

10. Conclusion and Future Work

In this work, we proposed a novel approach to dynamic analysis and structural

assessment of a software system that takes advantage of repeated patterns of ex-

ecution traces that exist within the executions of a set of carefully designed task

scenarios. The proposed approach takes advantage of techniques such as: execution

trace manipulation; sequential pattern mining; string processing; and software vi-

sualization through concept lattice analysis. This work benefits from the discovery

nature of data mining techniques and concept lattice analysis to extract both fea-

ture specific and common groups of functions that implement important features of

a software system. The resulting execution patterns provide discovery of valuable

information out of noisy execution traces. This technique is centered around a set

of task scenarios that share a specific system feature. The whole process consists

of several steps such as: software instrumentation; feature-specific scenario set se-

lection; loop-based execution trace elimination; execution pattern extraction; and

finally structural assessment of the software system. The proposed technique has

been applied on two medium size systems: an interactive drawing tool, and an email

client with very promising results in extracting both feature specific and common

functions. Moreover, the level of “structural cohesion” and “functional scattering”

are measured that provide a way for assessing the structure of the experimented

system. More specifically, the contributions of this work to the field of software

maintenance can be categorized as follows.

• Devised a novel pattern based approach to dynamic analysis of a software sys-

tem that employs data mining techniques to extract valuable information out

of noisy execution traces.

• Proposed a technique to reduce the large sizes of the execution traces by elim-

inating the loop-based repetitions.

• Proposed a new technique for eliminating the sub-patterns that are generated

along with the execution patterns.

• Identified the set of core functions that implement specific features as well as

common features of software systems.

• Provided a measure of scattering the feature functionality over the software

structure and a measure of module cohesion.

• Visualized the distribution of functions over specific features using concept lat-

tice analysis.

• Implemented a publicly available Eclipse plug-in toolkit (Dynamic Alborz) for

dynamic analysis [5].

The proposed dynamic analysis in this paper has been the foundation for our

current research on the hybrid static and dynamic approaches, through: embedding

run-time profiling information into a pattern-based architecture recovery technique
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to control component interactions [28]; and a multi-view architecture recovery where

the structure view is reconstructed using modules and interconnections that are

resulted by growing the core functions related to the specific feature identification

in source code [29]. Currently, we are pursuing the integration of dynamic analysis

with a two-phase design pattern recovery technique, and we intend to apply the

proposed execution pattern mining towards identifying interaction patterns among

web-based distributed systems.
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