
Noname manuscript No.
(will be inserted by the editor)

An Expressive Event-based Language for Representing
User Behavior Patterns

Hassan Sharghi · Kamran Sartipi

Received: date / Accepted: date

Abstract In-depth analysis of user interactions with applications in large systems
is widely adopted as a means to understand user’s behavior for strategic purposes
such as fraud detection, system security, weblog analysis, social networking, and
customer relationship management. Overall, the user behavior presents character-
istics, relationships, structures, and effects of a sequence of actions in a specific
application domain. The interaction of users with applications at the business-level
generates events that make the elements of the user behavior. Formal modelling
and representation of complex patterns of user actions using expressive languages
are critical aspects of behavior analysis. We present a model to describe the be-
havior elements and their relationships. The model also provides a systematic
mechanism for describing and presenting events, sequence of events, and complex
behavior patterns. A behavior pattern can be defined as a sequence of typed events
that occur during specific time intervals. An event consists of a tuple of attributes
whose values represent an observation of the behavior. In this paper, first we de-
fine a semantic model of the user behavior to address the issues around the user
behavior representation, and then we present syntax and semantics of a generic
Behavior Pattern Language (BPL), which enables the analysts to define a variety
of complex behavior patterns in a declarative manner. We present the feasibility
of the approach through several examples of complex behavior patterns expressed
using the proposed language.

Keywords Behavior Pattern · Sequence of Events · Language · Semantics ·
Constraint

H.Sharghi
Department of Electrical, Computer and Software Engineering, University of Ontario Institute
of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
Tel.: +1-905-721-8668
E-mail: Mohammadhassan.Sharghigoorabi@uoit.ca

K. Sartipi
Information Systems, DeGroote School of Business, McMaster University, 1280 Main Street
West, Hamilton, ON, L8S 4M4, Canada
Tel.: +1-905-525-9140
E-mail: sartipi@mcmaster.ca

2 Hassan Sharghi, Kamran Sartipi

1 Introduction

Behavior computing is an emerging field and young discipline aiming at exploring
formal methods for human behavior representation and analysis. However, rep-
resentation as a key component in behavior computing has not been sufficiently
studied to establish a generic and comprehensive approach [11].

Designing an efficient and scalable infrastructure for monitoring and process-
ing behavior patterns has been a major research interest in recent years to provide
a mechanism for the enterprise to monitor the behavior patterns and anomalous
behaviors of their customers. Behavior data are becoming a valuable asset to be
carefully analyzed in order to reveal its explicit and implicit knowledge that can-
not be attained just through recorded transactional data. Moreover, appropriate
presentation of behavior analysis results is valuable for end users to enable them
to make decisions properly.

Human and machine behavioral modeling and analysis are becoming interesting
areas of study in a variety of research domains such as computer security and
access control [31, 33], insider threat detection [27], fraud detection [24], finance
[10, 17], social network analysis [2], and weblog analysis [22]. However, modeling,
representing, comparing, and analyzing of users’s behavior have not been explored
in a precise way.

Behavior modeling and representation attempt to develop languages and tools
based on formal methods and emerging technologies. Such a language will allow the
analyst to illustrate primitive events and their attributes, semantics, constraints,
and behavior patterns in a detailed and precise manner. The correlations between
events based on attribute values along with constraints constitute the semantics of
behavior pattern. In this paper, we describe the semantics of behavior pattern in
terms of proximity, association, separation and causality relations between events
and illustrate them by a series of tangible examples in healthcare domain.

In this context, the proximity pattern refers to a sequence of events that oc-
cur within a particular period of time or in a specific location. This is achieved
by restricting the attribute values of time or location. Association pattern refers
to the sharing of the same group of attribute values among a subset of events,
and represents the correlation between events. Separation is another category of
behavior pattern that corresponds to two or more associated events that are sepa-
rated based on the value of a specific attribute value. In causality relation between
events, one event can affect another event based on the result of an attribute value
evaluation. In this case, the first event or group of events causes the second event
or group of events.

Due to the lack of access to the real log data for behavior analysis in critical do-
mains, algorithm evaluation is a challenge for analysts. Consequently, generating
log data containing different categories of patterns can relieve the issue of algo-
rithm evaluation. However, some issues exist around generating behavior patterns
such as: how analyst can present the structure of the behavior pattern? How the
semantic of the behavior pattern can be represented? And how the constraints for
the behavior pattern can be demonstrated?

In this paper, we propose Behavior Pattern Language (BPL) that allows the
analyst to specify precisely the features of the user behavior patterns. BPL’s fea-
tures have been inspired from high-level programming languages such as Ruby
[28, 15] and Python [23]. The defined operators represent relationships between

An Expressive Event-based Language for Representing User Behavior Patterns 3

the behavior elements. Negation or non-occurrence, event sequence, frequency of
occurrence, and time and location separations between the events, are some im-
portant features of the BPL that provide semantics for the behavior patterns.

This paper presents the following contributions: i) provisioning a model based-
on ordered set of events to present the feature of the user behavior pattern; and
ii) proposing a specification language that offers powerful features to demonstrate
the structure and semantics of the user behavior patterns. The remaining of this
paper is organized as follows: Section 2 investigates the related work. We describe
the proposed framework and our approach to model the behavior pattern in Sec-
tion 3 and Section 4, respectively. In Section 5 we present the syntax, semantics
and feature of the proposed language. In Section 6, different categories of behav-
ior pattern will be modeled by BPL. Finally, Section 7 provides the concluding
remarks.

2 Related work

Behavior modeling has been increasingly recognized as a challenge for associating
semantics with the human’s actions to be used in different environments and for
different purposes. Cao et. al [10, 29] consider behavior as an individual’s activities
represented by events as well as activity sequences issued by the user within certain
context. They defined four dimensions, as: actor, action, environment and relation-
ship to represent abstractly the user behavior. The assigned attributes allow for
describing features of each dimension and Temporal Logic is used to express the
properties and relations between elements of a desired behavior. Their approach
is similar to the BDI (Belief-Desire-Intention) model [30] developed in multi-agent
systems, and the proposed model is appropriate for modeling and analyzing activ-
ities in abstract level.

In [32] a conceptual language NKRL (Narrative Knowledge Representation
Language) provides an ontological paradigm to deal with the most common types
of human behaviors. This approach is basically a knowledge representation lan-
guage to fill the gap between behavior modeling and its translation into computer-
usable tools. They interpreted a narrative including a sequence of logically struc-
tured elementary events that describe the behavior. In [2] the authors introduce a
semantic model for representing and computing behavior in online communities.
An ontology was defined that represents all involved entities and their interac-
tions. Representing the behavior pattern by semantic rules has been also proposed
in literature so that in [9] Event-Condition-Action (ECA) rules was considered to
represent the frequent behavior patterns.

The mentioned ontology-based languages for behavior tries to infer the se-
mantics of a behavior described by a natural language. BPL differs from such
languages in terms of objective. BPL represents a behavior based on attributes of
actual events occurred in the environment. The correlation between events is con-
sidered as the semantics of the behavior. BPL leverages the constructs in high level
programming languages to represent such correlations instead of using semantic
rules whose may convey some kinds of ambiguities.

Representing behavior using the modelling languages has been proposed in
[26, 16]. The HBML (Human Behavioral Modeling Language) was introduced by
Sandell et. al [26] in order to efficiently capture the relationships and behaviors

4 Hassan Sharghi, Kamran Sartipi

derived from analysis of data streams. The behavior is represented in three orders
(0th order, 1st order and 2nd order) so that the 0th order describes the list of
activities that a user may engage to do, the first order describes the 0th order
activities along with some environmental context information, and the second
order describes the activities with probabilistic characterization.

HBML is a domain specific modelling language for instantiating process models
for profiling and tracking the behavior of objects. A profile contains information
such as descriptions, attributes, activities and distributions relevant to a specific
behavior. HBML defines a behavior as a set of activities with a statistical character-
ization of those activities. Using the statistical model for behavior representation
is completely different from the model applied in the BPL. The HBML uses a
probability distribution to describe a new behavior of the entity based on the past
behavior. However, modelling a new behavior resulted from the past behavior of
the user is not the goal of the BPL for a behavior representation.

Behavior representation and analysis is closely related to the event processing
approaches that have been explored extensively in recent years. Complex Event
Processing (CEP) [19] is a technique of high speed processing events on a lower
abstraction level in order to recognize significant events or meaningful patterns in
event stream. A series of SQL based languages have been proposed for querying the
desired patterns on event streams [13, 8, 25, 6, 5]. These domain specific languages
are useful for making query on event stream, however there is no information about
their success in representing the correlation among events and the semantics of the
patterns. Languages that have been recently proposed to represent events and their
correlations, can be divided into two groups: Data Stream Processing (DSP) and
Complex Event Processing (CEP) languages [12].

CQL (Continuous Query Language) is a notable representative of DSP-based
languages which is an expressive SQL-based declarative language for registering
continuous queries against streams and stored relations [4]. Each query in CQL
defines rules on one or more streams as inputs and generates one output stream.
The expressiveness of CQL is provided by three classes of operators that are used
to define queries. ”Stream-to-relation” operators are known as ”windows” and are
applied to produce a relation from a stream, ”relation-to-relation” operators that
produce a relation from other relations and are basically standard SQL opera-
tors, and ”relation-to-stream” operators that produce a stream from a relation.
However, no explicit sequencing operators are provided to represent the order-
ing between elements during handling the stream and relation in CQL and similar
languages. Therefore, representing behavior patterns containing sequence of events
by CQL is very difficult. In general, DSP-based languages have been designed to
separate portions of input streams and perform traditional database operations.
Consequently, they have limitation to detect complex patterns.

In contrast, CEP-based languages have been specifically designed for detection
of complex patterns on incoming streams. The majority of existing languages sup-
port non-monotonic features such as negation of events, aggregation, or repetitive
events. However, the lack of expressiveness to represent complex features is a sig-
nificant challenge for existing languages. For example, [7] introduces a language
that implements a data model consists of temporally ordered sequences of event
streams so that each event stream has a fixed relational schema. The language in
[8] also focused on temporal relation between events by looking at the occurrence

An Expressive Event-based Language for Representing User Behavior Patterns 5

Ward_n
……

Ward_2

Heart

Event
Log

Laboratory Information
System

Medical Information
System

Patient Registration
System

Radiology Information
System

Behavior
Pattern

Representation

Behavior
Pattern

Matching

Nurse

Physician

Radiologist
Pharmacist

Receptionist

Specialist

Patient

Ward_1

Emergency

Data Analysis

Administrator

H
o

s
p

it
a
l
In

fo
rm

a
ti

o
n

 S
y
s
te

m

Policy

Repository

Fig. 1: The proposed framework for extracting knowledge about the behavior of authorized
users through mining and analyzing event sequences in the system’s event log.

times of events. This language uses reactive and deductive rules to reason about
relationships of events.

Compared to such languages, the BPL provides any kinds of relationship be-
tween events based on attribute values. Therefore, BPL is not limited to only
temporal relation. Actually, temporal relation is implicitly considered by using
order-set in our proposed language. Meanwhile, the BPL is not just a query-driven
language that processes repetitively a query on a stream at given intervals.

Rules, that describe a pattern, are often expressed in natural language that
is inherently ambiguous. Therefore, any designed language should have precise
semantics for developed features in order to use such rules for event selection,
combination and processing [3]. Providing such unambiguous semantics is another
challenge for existing languages. Some languages such as [7, 18, 20] attempted to
solve the issue through providing strict policies for selection and combination of
events, but they do not allow users to change or adjust policies.

To rectify the deficiencies found in existing languages and provide a high de-
gree of expressiveness, we introduce a generic language called Behavior Pattern
Language (BPL) to represent accurately a complex behavior pattern. A powerful
behavior pattern language is more than just a means for representing a behavior
pattern. It also serves as a framework which helps analysts organize their ideas
about a behavior or compose behavior pattern from a hypothesis in order to ap-
prove or reject a suspicious behavior. BPL provides some mechanisms to combine
simple expressions and primitive events to represent the structure and semantic
aspect of a user behavior pattern.

3 Proposed framework

Due to the complex structure of a healthcare environment, implementing a secure
and reliable information system is a challenging task. As an example, we consider

6 Hassan Sharghi, Kamran Sartipi

a Hospital Information System (HIS) whose main task is provisioning timely and
securely access to different resources for authorized health professionals. To appre-
ciate the complexity of an HIS implementation, one can imagine a large number
of interconnected and communicating subsystems that constitute the HIS, where
each subsystem is a potential target for abnormal use by its authorized users.

Figure 1 illustrates the proposed framework for extracting knowledge about the
behavior of the authorized users through mining and analyzing event sequences in
the system’s event log. Hospital departments are organized into specialized wards.
Experts in different roles work together in teams to treat patients. They com-
municate with a HIS to acquire data from different systems such as: laboratory
information system, medical information system, diagnostic imaging system, ra-
diology information system, etc. Such interactions should follow the job workflow
and satisfy the policies defined in the system. However, the IBM Cyber Security
Intelligence Index reports that 55 percent of attackers are insiders [1]. The in-
crease in the number of successful insider attacks on healthcare systems in recent
years shows that the current access control mechanisms are inefficient in protecting
against insider threat.

The behavior of users in different roles with the HIS system to access different
kinds of resources will be recorded in a repository, namely event-log. Events convey
important information about the behavior of users, and in particular sensitive
aspects such as suspicious activities that may jeopardize the system’s security.
However, it is almost impossible to extract useful knowledge from individual events
and attributes, unless we consider the relations such as sequence, association and
dependencies among events.

Authenticated and authorized users can affect the security level of a service-
based distributed system through misusing the resources. Therefore, the behavior
of users should be constantly monitored and the policy of the system should be
regularly updated by the administrators. However, monitoring and analyzing the
activities of users are not easy tasks, particularly in distributed systems that in-
corporate a large number of users with different levels of authorization. Moreover,
the changing nature of users’ behavior poses significant challenges with respect to
system monitoring, auditing, and diagnosing.

Supervised analysis of event data to reveal suspicious activities and extract
user behavior patterns can assist the administrators to enhance the security level
of the system. However, extracting the behavior patterns for the purpose of secu-
rity is challenging in terms of modeling and representing behavior patterns, and
extracting behavior instances from the log data, which requires a pattern-matching
engine to identify user-behavior instances in a large and dynamic event log, and
perform post analysis of the extracted instances.

As can be seen in Figure 1, all access to resources will be recorded in a central
log repository. Statistical analysis of event log provides primitive knowledge about
the usage percentage of different resources, usage frequency during different time
interval, the spent time for each resource, the frequency of a particular activity
on a resource, user’s demography, etc. Log data analysis can supplement the un-
derstanding of users’ behavior with more concrete data, and it provides a means
to investigate the users’ interest to existing resources in a distributed system. The
statistical information provides some hints for data analysts to explore about par-
ticular behaviors in the system. Modelling and representing such behaviors are the
significant challenges in this context, and the main motivation for this research

An Expressive Event-based Language for Representing User Behavior Patterns 7

Table 1: Sample attribute names and domain values

Attributes and Domain Values
Attribute Name: a Domain of Values: Da

User John, Mike, Emma, Julia, Mary, Robert
Role Nurse, Physician, Radiologist
Action Read, Write, Create, Order, View
Resource Diagnostic Report, Image, Exam
Time 00:00 − 24:00
Date 2000-01-01 , 2099-12-30

is to propose a state-of-the-art solution through proposing a Behavior Pattern
Language (BPL).

Data analysts can utilize the proposed BPL to describe any suspicious behavior
for investigation. The described behavior will be converted into a sequence of events
called reference pattern and a set of constraints that represent the correlation
between events. Next, a pattern matching engine searches the log file to identify
patterns that approximately match the reference pattern.

We used the Valued Constraints Satisfaction Problem (VCSP) to model the
approximate behavior pattern matching problem. A VCSP is characterized by a
set of hard constraints that must be satisfied, and a set of soft constraints whose
satisfaction is desirable. Therefore, solving a VCSP means finding an assignment
(set of events) that sub-optimally satisfies a set of hard and soft constraints. In
other words, the VCSP searches event logs to identify instances that are highly
similar to the reference pattern. Analyzing the results reveals some facts about
users, resources and actions. The administrator can use such facts to react properly
against abnormal behavior or enhance system security by the means of updating
the access control policies of the subsystems.

4 Behavior modeling

In this section, we formally define different components that progressively build
the proposed user behavior model.

Definition (Attribute a): an attribute ”a” (a ∈ A set of attributes) is a con-
textual information from an actionable and context-aware environment such as
hospital, business enterprise, or any other work place. The value of attribute ”a”
belongs to a particular domain of values Da. Typical primitive types such as inte-
ger, float, text, date and time are used to define the domain values of an attribute.
Table 1 specifies the attribute names and their domain values in the context of this
paper. Definition (Event e): an event is a primitive element of a behavior. Events
represent interactions between behavior subjects and objects within the system.
An event is represented as a tuple of attributes that describe the characteristics of
the interaction between a user and a system resource. An analyst can obtain some
basic information from a primitive event since the semantic information provided
by a single event is quite limited. Below, two examples of events with six attributes
are shown:
e1= <John, Nurse, Read, Diagnostic Report, 10:00, 2015-06-10>
e2= <John, Nurse, View, Image, 10:30, 2015-06-10>

8 Hassan Sharghi, Kamran Sartipi

Definition (Event set E): an event set is the set of all primitive events that are
recorded in the log repository of the system. Basically, the event type defines a
specification for an event set so that all events should have the same structure.

Definition (Event type T): an event type is determined by the structure of
the event tuple in terms of the number of attributes and the domain values of
attributes. Two events have the same type if both the number of attributes and
their domain values are the same (as e1 and e2 above). Below the event type
associated with events e1 and e2 are shown:
T = <User, Role, Action, Resource, Time, Date>

Definition (Behavior B): a behavior is an ordered-set1 of finite number of
events that possess the same event type T. For simplicity we also refer to the
ordered-set as a sequence. The order of events in the set is determined by an
index, which starts with 1. Each event in the set is denoted by a single variable ei.
The occurrence order of the events is based on a time stamp. For example, ei−1 is
before ei and ei+1 is after ei, however, the time intervals between the events may
be different.

B= { e1, e2, ..., en }
Definition (Behavior pattern P): a behavior pattern consists of two parts

”static” and ”dynamic”. The static part defines the structure of the pattern and
includes the number of events and the event type. In fact, it represents the com-
mon characteristics (or context) among the events. The dynamic part defines the
semantic of the behavior through making correlation between the events in the
pattern. Furthermore, a behavior pattern includes a set of constraints that must
be satisfied by the user behaviors that approximately match the behavior pattern.
These constraints manage the sequence and association among the events. In other
words, the semantics of the behavior pattern is represented by a set of constraints
that provide association among the events or specify particular conditions for the
pattern to be met by the matching user behaviors.

Definition (Feature f): a feature ”f” (f ∈ F set of features) of the behavior
pattern is a relation between events based on attribute values. It is defined by a
tuple containing the following elements:

f = <E1, E2, T, V, O> where:

E1, E2 ⊆B are ordered sets of events

T: Event type

V: Ordered-set of attribute-domains (different Da’s), where the order of attribute-
domains in V is the same as the order of attributes in T.

O: Set of operations (defined below)
Definition (Operation o): an operation ”o” (o ∈ O, where O ⊆ E1 ×E2 × T × V)
defines a relation between two sets of events, attributes and values. An operation
synthesizes a particular feature by defining constraints between event-sets.

Definition (Constraint C): a constraint Cj is defined as a pair <tj , Rj>where
tj ⊆ A is a subset of k attributes (defined by event type T) and Rj is a k-ary
relation on a set of attribute-domain subsets Dj for the corresponding attributes
tj . In this case, an evaluation of the attributes (i.e., assigning values to attributes)
assigns values from the subsets of domains (Dj) to a particular set of attributes,
such that the relation Rj is satisfied.

1 Behavior is an ordered-set of events since every event in the behavior is unique due to its
time occurrence.

An Expressive Event-based Language for Representing User Behavior Patterns 9

5 Behavior pattern language

Our definition for behavior which is based on a finite ordered-set of events allows
our behavior language to represent the user behavior through a set of operating
atomic events. Behavior representation and analysis are close to Complex Event
Processing (CEP) as an emerging field that attempts to detect event patterns using
continuously incoming events based on an abstraction level. Using general-purpose
languages such as C or Java for implementation of event processing features causes
extra and complex operations in terms of implementing low level functions for
events and query structures. Therefore, designing a specific language for event
processing has been emerged as an interesting topic for research. Several languages
have been introduced as the result of such research in recent years.

To justify why we need a new event-based specification language, we present
an example to illustrate the kind of primitive expressiveness and flexibility we
need to handle users’ behavior patterns. As an example, we consider a hospital
information system (illustrated in Figure 1) comprising of several systems in order
to provide facilities for authorized care providers (users) to access resources such
as medical information, laboratory information, diagnostic images and associated
reports. Events representing users’ interactions with the resources will be logged in
the system’s storage. Each event is described by a set of attributes. Now, suppose
the administrator must be notified in case of misusing the resources. Depending
on the context, the application requirements, and the user preferences, the notion
of resource misuse can be defined in different ways. Here we present four cases of
misuse behavior and use them to show specifications that should be provided by
an event processing language. Misuse can occur when:

i. A nurse first reads and then writes a diagnostic report pertinent to a specific
patient more than 3 times within 5 minutes.

ii. A user edits the diagnostic reports of a patient in ward-1 in the morning, and
again she accesses those resources when she works in ward-2 in the afternoon.

iii. A physician accesses to resources more than twice the number of her assigned
patients within a month.

iv. A user sends requests to access the system resources in less than 3 minutes
from two different locations whose distance is more than 100 meters.

Such cases apply a set of constraints to select the relevant events from the
dataset. Two kinds of selection constraints have been used. The first kind chooses
events based on attribute values and we call it “attribute parameterization con-
straint”. For example, case (ii) considers those events that occur in particular loca-
tions, or case (iii) addresses events whose role attribute value is ”physician”. The
second kind of selection constraints operates on a particular relationship among
events, namely “attribute factorization constraint”. For instance, case (i) affects
those events that occur within 5 minutes, actually it defines a timing relationship
between events in order to select a sequence of events, or case (iv) filters events
according to a location proximity. Furthermore, case (i) combines both parameter-
ization and factorization constraints to define iteration that selects those sequences
of events that repeating specific actions. Case (ii) implies negation through lim-
iting the occurrence of events in a given interval. Similarly, case (iii) introduces
aggregation by applying arithmetic functions on events relevant to a particular role

10 Hassan Sharghi, Kamran Sartipi

PATTERN name;

END

DEF Event = <Attribute_1,…., Attribute_n >;
event_list[] = NEW Event (quantity);
Set = {define the set of events};

CALL operations or constraints;

DEF Operation_name

END

Block DO … END
Assertion

Heading

Declarations

Invocations

Operations

Constraints

Fig. 2: The structure of a BPL code to describe a typical behavior pattern

in order to compare the rate of access to resources and the number of assigned
patients.

Finally, when the events have been selected, such cases specify which pattern
will be created by those events. Moreover, the inner structure of the pattern in
terms of length, sequence of events, and their association will be defined by such
cases. A language for behavior pattern not only should be simple and unambiguous
for translating constraints, but it also should be able to express all the defined
constructs: parameterization, factorization, iteration, negation, aggregation, and
sequencing.

BPL is a language to represent the user behavior through defining a sequence
of events and their correlations. The ability to combine events and keep the or-
dering of events is a basic and powerful specification for an event-based language.
Consequently, we deal with two kinds of elements in BPL: ordered sets of events
and operations. Operations are descriptions of the constraints for defining the cor-
relations between events. The embedded features and operators to BPL improve
the capability of BPL to address any categories of behavior.

5.1 Syntax and grammar of BPL

The BPL code consists of five parts to represent a typical behavior pattern. Figure
2 illustrates the structure of a BPL code specification. The declaration is used to
describe different entities existing in the pattern. These entities include: attributes,
events, sequence of events and some parameters that specify the structure of the
pattern. In other words, the skeleton of pattern will be defined in the declaration
section, then the pertinent operations and constraints will be called to establish
the meaning of the pattern.

The methods in the operation section are used to define the relation between
two ordered sets of events that are chosen by the analyst. These ordered sets
are subsets of the sequence of events that represent the pattern. The BPL allows
the analyst to choose at most two sets because the defined operators are unary
or binary. The relation can be defined through applying different statements and

An Expressive Event-based Language for Representing User Behavior Patterns 11

operators to manipulate attributes and attribute values. If the analyst intends
to define particular restrictions for the operation, the relevant assertions will be
defined in the constraint section. The methods in the operation section interact
with the constraints via the provided language constructs such as block and yield.

We used the Extended Backus-Naur Form (EBNF) to describe the syntactic
structure of the BPL. Appendix A provides the syntax of the BPL.

5.2 Features of BPL language

BPL takes advantage of the following concepts in high-level programming lan-
guages, to define different forms of behavior patterns.
Iterator: Most advanced programming languages provide an object called itera-
tor that enables a programmer to traverse a collection of data. Each data item
is considered once during a traversal. The iterator handles the progress of the it-
eration by providing a reference to the next entry in the collection. We provide
this capability for BPL through ”each” method and ”foreach” statement that can
manipulate repeatedly the events in an ordered set.
Block: The structure of block is extensively used to break up large programs into
tractable pieces. It is an important tool for organizing the construction of large
programs. Blocks can appear immediately after the invocation of a method. Sim-
ilar to a method, the block can take parameters. We consider that the statements
of the block are located between ”do - end” keywords, and the parameters appear
at the beginning of the block and between the vertical bars. In the following ex-
ample, we assume that B is an event-set containing 5 events of type T that uses an
iterator (each method) and a block to assign values to attribute Role for all events.
Each event in B is fetched by iterator each and then passed as an argument that
is replaced with parameter event. The block has one statement that assigns value
”Nurse” to each fetched event.

-- Assigns values to attribute Role

B = {e1, e2, e3, e4 , e5};
B.each do |event|

event.Role = "Nurse";
end

Module: A module is a programming concept which allows for reusability of
code through grouping together methods, classes, and constants. To facilitate the
representation of different kinds of patterns, we define a series of methods called
operators to manipulate events. These built-in operators can be organized as mod-
ules and then can be utilized to represent different categories of behavior patterns.
Yield: A common use of yield in a programming language is to transfer the control
from one point of the code to another point of the code. This capability enables
programmers to make a customizable form of an iteration. However, in some sit-
uations, it needs to implement or reuse a custom functionality inside a common
functionality. We leverage the feature of yield construct in Ruby to implement
constraints as custom functionality inside operations as common functionality. In
other words, we use yield to separate the parts of the representation that demon-
strate the semantics of the pattern from those that define the structure of the
pattern.

12 Hassan Sharghi, Kamran Sartipi

5.3 Applying the features

In Example 1 below, we apply the mentioned features in order to define an op-
eration whose task is to assign values to two attributes of every event in the
ordered-set B consisting of 5 events. When operation ”OP” is called via ”CALL
OP (B)”, the ordered-set B is passed to it as parameter. In definition of ”OP” the
keyword ”each” plays the role of an iterator and fetches individual events from
the ordered-set B repeatedly and passes them to a block as parameters. The block
contains a ”YIELD” statement which passes each event ”e” back to another block
that is defined after ”CALL OP (B)”. This second block then assigns the attributes
”User” and ”Role” of each event to ”John” and ”physician”. After executing the
statements of the second block, the control returns to the ”OP” and this procedure
repeats for the next event.

--Example 1;
B = {e1, e2, e3, e4 , e5};

CALL OP (B) DO |event|
event.User ="John"
event.Role =" physician"

END

DEF OP (set)
set.each DO |e|

YIELD (e)
END

END

Below is another example that demonstrates the functionality of yield so that
the common functionality is handled by “method2” and custom functionality is
handled by the block defined in “method1”.

DEF method1
CALL method2 DO |b|

FOREACH event IN b DO
event.Action = "write";

END
END // end of block

END // end of method1

DEF method2
B = {e1, e2, e3};
YIELD (B)

END

When method1 is invoked, it calls method2. method2 starts executing until yield
is reached. At that point control along with the parameter B is transferred to the
block that was defined in method1. The block is executed. The value of attribute
“Action” changes to “write” for all events. Then, the control returns to method2.

5.4 Operation and Operator

What makes a user behavior pattern distinct from another pattern is the proper-
ties that exist in the sequence of events representing the user behavior pattern.
Correlations between events convey the meaningful features of the pattern. The
analyst can show the features of the pattern through defining particular operations
on the ordered set of events. Assigning events to event-sets depends on what events
participate in the association and how many event-sets are needed. We consider

An Expressive Event-based Language for Representing User Behavior Patterns 13

at most two ordered sets can be operated in each operation because unary and
binary operators will be used in an operation. To represent a feature, the analyst is
allowed to adjust the sets in order to define appropriate operations. To implement
the relation among events inside an event-set or between two event-sets, we define
several unary and binary operators. The defined operators can be grouped in three
categories.

• The first category containing “NEW” and “INITIALIZE” is intended to define
the structure of the pattern. The operator “NEW” creates sufficient place-
holders for corresponding events in the pattern. Events in a pattern have the
same type, so the placeholders have the same size and structure. The operator
“INITIALIZE” assigns the value to a particular attribute for all events in an
event-set.
• The second category of operators are used to manipulate the ordered set of

events. The operator “VALUEOF” returns the value of an attribute for a par-
ticular event or for all events. Joining two event-sets can be performed by
operator “UNION” so that the result of union is a new ordered set of events.
The operator “FOLLOWEDBY” is useful to change the sequence of events in
an event-set. The specification of a pattern can be expressed by constraints.
Not only do constraints define the correlation between events, but some kind of
constraints also affect the whole pattern. The appropriate operations manage
the constraints that make correlation between events. However, to handle the
second kind of constraints that limit some features of the whole pattern, we
use the built-in operators or the combination of operations and operators. In
BPL, we also utilize the assertion mechanism (by using keyword “ASSERT”)
to enforce these kinds of constraints.
• The third category of operators include “DISTANCE” and “FREQUENCY”

that are designed to apply constraints. Calculating the difference of two at-
tribute values can be used to define particular attribute based constraints. We
define the operator “DISTANCE” in order to calculate the distance between
values of attributes whose types are time or location. It computes the distance
of attribute values for each pair of event. It returns an array as the result of
difference. For example, we want to enforce three events e1, e2, e3 occur within
2 hours. The DISTANCE (e1, e2, e3, Time) returns the following array that
the value of each element should be less than 2.
[(e1.T ime− e2.T ime), (e1.T ime− e3.T ime), (e2.T ime− e3.T ime)] ≤ 2
The operator “FREQUENCY” enforces the number of times a set of events
(representing a sequence of actions) should be repeated in the dataset.

5.5 Semantics of BPL

Semantics provides the meaning of the well-formed statements of a language. Se-
mantics should be preserved by language implementation applications such as
interpreter or compiler. The syntax is specified by a context-free grammar such as
Backus Naur Form (BNF) and its variations. However, there is not a single defi-
nition method to explain the semantics. An informal way (i.e. example or text) is
usually used to specify the semantics of the language constructs [14].

Operational semantics presents the meaning of a program in terms of how
it can be interpreted by a machine. In other words, the operational semantics

14 Hassan Sharghi, Kamran Sartipi

Table 2: The description and syntax of operators

Operators
Operator Description

NEW NEW event-type (number of event), returns an event-set that have
same type

INITIALIZE INITIALIZE (ordered set of events, attribute, set of value), initialize
an attribute for all events in the set. The cardinality of event-set and
value set is the same.

VALUEOF VALUEOF (ordered set of events or an event, attribute), return the
value of attribute for each event in the set or for a particular event.

UNION UNION (ordered set of events, ordered set of events), make the union
of two ordered set. The result is an ordered set as well.

FOLLOWEDBY FOLLOWEDBY (event, event), the first event is followed by the sec-
ond event.

DISTANCE DISTANCE (ordered set of events, attribute), enforces the distance
between attribute values of all generated pairs of events. It can be
used for attributes whose type is time or location. The return result is
an array containing the difference between attribute values of pairs of
events.

FREQUENCY FREQUENCY (ordered set of events), enforces the frequency of the
ordered set in the dataset.

provides a translation mechanism to convert a program to an equivalent program
in another language which is simple for understanding. Plotkin [21] introduced
the operational semantics in order to describe language semantics in terms of a
state transition system as a mathematical tool. Such view makes the operational
semantics similar to an interpreter.

The operational semantics is defined by state transitions of an abstract ma-
chine. An abstract machine consists of four main elements: control stack (c), result
stack (r), processor and memory. Instructions are stored in the control stack and
the intermediate results are kept in the result stack. A processor performs op-
erations such as comparisons, arithmetic and Boolean. Variables and values are
stored in a memory modelled by a function called m. dom(m) denotes the set
of locations where m is defined. m(l) denotes the value stored at location l and
m[l 7→ n] maps l to the value n. Formally, an abstract machine is defined by a
set of states (configurations) along with transition rules. A state s is defined by
a triple 〈c, r,m〉 of control stack, result stack, and memory. A transition rule is a
binary relation between two states.

Definition 1 (semantics of expressions): The value generated by the machine
after zero or more transitions for an expression E is considered as the semantics
of E [14].

〈E.c, r,m〉 ∗−→ 〈c, v.r,m′〉
E.c: denotes the expression of E on top of the control stack
v.r: denotes the value of E on top of the result stack
∗−→ : denotes zero or more transition steps

Representing the semantics of a language through using abstract machine needs
to write a large number of transition rules in detail. Although it is useful for the
implementation of the language, it is too detailed for the users of the language.
Therefore, we applied structural operational semantics proposed in [21] based on

An Expressive Event-based Language for Representing User Behavior Patterns 15

the transition system. In structural operational semantics, the transition rules
for a compound statements are inductively defined based on transition rules of
substatements.

There are two methods to represent the structural operational semantics [14]:
(1) small-step semantics, based on a reduction relation, and (2) big-step seman-
tics, based on an evaluation relation. In the first method, a transition relation is
inductively defined by a set of axioms and rules between states. Axioms are used
for reduction whereas rules are applied to specify how to generate new reduction
steps based on ones that have been already defined.

The big-step semantics associates each state with its result and abstracts from
the details of the evaluation process. The transition systems have the same set
of states in big-step semantics and small-step semantics, but the transition rules
are different. Transition rules represent individual computation steps in the small-
step semantics and full evaluation in the big-step semantics. We use the big-step
operational semantics to explain precisely the features of BPL. The transition
relation is denoted by ⇓.

Variable and Constant: We define Rule 1 and 2 to describe the meaning of
constant and variable respectively.

〈c, s〉 ⇓ 〈c, s〉; if c ∈ Da ∪ {True, False} (1)

Da denotes domain value for an attribute a. c represents the constant. s shows the
state of the transition system.

〈∗l, s〉 ⇓ 〈v, s〉; if s(l) = v (2)

l is a location of memory (variable) and ∗l denotes the content of the location l
and s(l) represents the value of l in the state s.

Operator: The meaning of a statement that uses a binary operator such as
arithmetic or comparable is defined by Rule 3. The rule says that for an expression
(e.g E1 op E2) containing a binary operator, first the value of E1 and then the
value of E2 are computed. The final result is generated by applying the operator
on the both values.

〈E1, s〉 ⇓ 〈n1, s′〉 〈E2, s′〉 ⇓ 〈n2, s′′〉
〈E1 op E2, s〉 ⇓ 〈n, s′′〉 if n = n1 op n2

(3)

Iteration: Iterative constructs cause a statement or sequence of statements (the
body of the loop) to be repeated for each item in a collection. BPL uses foreach and
each for iteration whose abstract syntax is: foreach A do B ; where A is a set whose
elements will be fetched one by one and B is the body that should be executed for
each element. Rule 4 shows the semantics of the iteration. The rule indicates that
when an element is successfully returned, the state of program will be changed to s′

and the returned element will be saved in location l. The statements in B can use
the stored element in the state s′ and the execution of statements changes the state
to s′′. The skip means the control is successfully passed to the next statement.
Finally, the iteration started in the state s terminates successfully producing s′′′.

〈A, s〉 ⇓ 〈true, s′[l 7→ v]〉 〈B, s′〉 ⇓ 〈skip, s′′〉 〈foreach A do B, s′′〉 ⇓ 〈skip, s′′′〉
〈foreach A do B, s〉 ⇓ 〈skip, s′′′〉

(4)

16 Hassan Sharghi, Kamran Sartipi

Operation: BPL calls operations to represent relationships between the behavior
elements (events). Each operation has a name, definition and may receive several
parameters. We represent abstractly an operation in BPL as an expression of the
form f(x1, . . . , xk) = d where x1, . . . , xk denote the parameters and d represents
the body of the operation f . Rule 5 indicates how an operation is interpreted.
First, the arguments of the operation are evaluated and then values are used in
the definition of the operation. In other words, the parameters in the body of
the operation are replaced with the values of the arguments. The skip in the rule
shows the control returns to the next statement after calling the operation. We
assume that arguments are sent by the reference. Consequently, the results of the
operation are directly assigned to the address (li) of arguments.

〈x1, s〉 ⇓ 〈v1, s′〉 . . . 〈xk, s〉 ⇓ 〈vk, s′〉 〈d[xi 7→ vi], s
′〉 ⇓ 〈skip, s′′[li 7→ v′i]〉

〈f(x1, . . . , xk), s〉 ⇓ 〈skip, s′′〉 (5)

Block: Unlike the operation, the block does not possess a name however it can
accept parameters. We consider the block as a sequence of statements between
keywords do and end. We define two rules to give a precise meaning to the construct
of the block. Rule 6 shows the assignment of the actual value (argument) v to the
parameter p. The assignment will be done by a reference (pointer) so that the
value of ref p is a new location whose content is the value of p.

〈ref p, s〉 ⇓ 〈l, s′[l 7→ v]〉
〈p, s〉 ⇓ 〈v, s′〉 (6)

Rule 7 shows the meaning of the block definition. According to Rule 6, the pa-
rameter is referenced to the argument and then the value of argument (content of
reference) is assigned to the parameter for each command C. After executing the
command, control will be transfered (skip) to the next command and the content
of the reference will be updated.

〈p, s〉 ⇓ 〈v, s′〉 〈C[p 7→ v], s′〉 ⇓ 〈skip, s′′[l 7→ v′]〉
〈DO p ; C END, s〉 ⇓ 〈skip, s′′〉 (7)

Yield: Using yield operator was inspired by Ruby programming language so that
such feature allows programmers to write code succinctly and efficiently. An op-
eration can be called with parameters as well as a block that itself may possess
parameters. We represent abstractly the block as a tuple 〈p, b〉. p is the parameter
and b is the body of the block. Such a block will be invoked by a yield statement
defined inside of the operation definition. The values of block’s parameters will
be provided by yield statement. We assume that the operation call happens in
the state s1 as well as all parameters and statements of the block will be kept at
this state. The operation starts running until it reaches the yield. Rule 8 shows
the assignment of the actual value v to the parameter a. We consider a as the
parameter of the yield.

〈ref a, s〉 ⇓ 〈l, s′[l 7→ v]〉
〈a, s〉 ⇓ 〈v, s′〉 (8)

Rule 9 indicates that the address of the block’s parameter will be mapped to the
same address containing the value of the parameter a. Then, the control will be

An Expressive Event-based Language for Representing User Behavior Patterns 17

jumped to the state s1 including the body of the block.

〈a, s〉 ⇓ 〈v, s′〉 〈ref p, s′〉 ⇓ 〈l, s1[l 7→ v]〉
〈yield, s〉 ⇓ 〈jump, s1〉

(9)

The parameter of the block will be replaced with the reference to the actual value
and Rule 10 shows after executing the body of the block, the control will be
transfered (jump) to the state s′ and the content of the reference will be updated.

〈p, s1〉 ⇓ 〈v, s′1〉 〈b[p 7→ v], s′1〉 ⇓ 〈jump, s′[l 7→ v′]〉
〈yield, s〉 ⇓ 〈skip, s′′〉 (10)

6 Categories of behavior patterns

Behavioral patterns describe interactions between users and resources in the sys-
tem. An interaction consists of a set of primitive events that are somehow related
to each other. Sequence, association and combination of the events are important
relations that can define different categories of behavior patterns in the real world.
In addition, there is a special type of relationship called causal relationship that
can express a pattern so that the events are not only in association, but that one
causes the other. Sequence is handled by temporal attributes of events. Therefore,
BPL always uses an ordered set of events to represent a behavior pattern and the
index of event indicates the order of occurrence of events. Applying constraints
on attribute values usually makes a relationship between events. For example, a
proximity constraint on attributes time and location can represent patterns that
occur in a particular period of time or within a specific location. The BPL has
enough capability to model the proximity of events based on a location or range
of time. Example 2 and example 3 demonstrate the capability of BPL to represent
the proximity feature of behavior pattern.
Example2 :
– Specifies the proximity of events based on a time period,
– Assigns the behavior pattern of a user in any role who first reads and then writes
the patients’ diagnostic reports more than 10 times from 9am to 10am.

PATTERN Example2;
BEGIN

DEF Event = < User , Role , Action , Resource , Time >;
E[] = NEW Event (2);
set1 = { E[1] };
set2 = { E[2] };
attVal = {<Action , ("read","write ")>,

<Resource , (" diagnostic report ")>, <Time , (9:00, 10:00) >};

CALL Op1 (set1 , attVal) DO |event|
event.Action = attVal[Action].value [0];
event.Resource = attVal[Resource].value [0];

END

CALL Op2 (set2 , attVal) DO |event|
event.Action = attVal[Action].value [1];
event.Resource = attVal[Resource].value [0];

END

ASSERT VALUEOF (set1 , User) == VALUEOF (set2 , User);
ASSERT FREQUENCY (UNION (set1 , set2)) > 10;

18 Hassan Sharghi, Kamran Sartipi

END

/* define operation and relevant constraint */
DEF Op1 (set1 , attVal)

set1.EACH DO |e|
YIELD (e)

END
ASSERT Time >attVal[Time]. value [0];
ASSERT Time <attVal[Time]. value [1];

END

DEF Op2 (set2 , attVal)
set2.EACH DO |e|
YIELD (e)

END
ASSERT Time > attVal[Time].value [0];
ASSERT Time < attVal[Time].value [1];

END

We define a list called Event including the attributes that make the structure
of a typical event for the example 2. Then, we use the operator NEW to specify
that the pattern has two events: E[1], E[2]. In this case, each of them is assigned to
a set. The BPL uses a dictionary data structure to specify the concrete values for
attributes. In this example, the variable attVal is a dictionary so that the keys and
the list of values have been extracted from the provided scenario. A built in method
called value is used to access an item of the list in the dictionary. For example,
attV al[Action].value[0] means that the first item (”read”) in the list corresponding
to key ”Action” in the dictionary represented by the variable ”attVal”. We invoke
the first operation (Op1) along with a block that has a parameter called event by
using keyword ”CALL”. The operation Op1 itself has two parameters: set1, attV al.
Inside of the operation Op1, the block will be invoked for the event in the set by
using operator yield. The statements of the block specify some attributes of the
event should have concrete values. Moreover, the used assertions emphasize that
the value for attribute ”Time” should be in the defined range.

Example3 :
– Specifies proximity of events based on location and time span.
– Defines the behavior pattern of a physician who can read the patient’s diagnostic
report from two different wards in a hospital within 2 hours.
–We assume that the distance between two wards is less than 100 meters.

PATTERN Example3;
BEGIN

DEF Event = < Role , Action , Resource , Location , Time >
E[] = new Event (2);
set1 = { E[1], E[2] };
attVal = {<Action ,(" read")>, <Resource , (" diagnostic report

") >,<Role ,(" physician ")>, <Location , ("L1","L2") >};

CALL Op2 (set1 , attVal) DO |event|
event.Role = attVal[Role].value [0];
event.Action =attVal[Action].value [0];
event.Location = attVal[Location].value [0] | attVal

[Location]. value [1];
event.Resource=attVal[Resource]. value [0];

END
ASSERT DISTANCE (set1 , Time) < 2;
ASSERT DISTANCE (set1 , Location) < 100;

END

An Expressive Event-based Language for Representing User Behavior Patterns 19

Fig. 3: Association between two separated groups of events

/* define operation */
DEF Op2 (set1 , attVal)

set1.EACH DO |e|
YIELD (e)

END
END

Some behavior patterns include events that can be put into some groups based
on a particular context such as location, and time. However, some events share
attribute values between groups. As an example, we consider a physician who
works in two different clinics (L1 and L2), but he can read the resources from
every clinic. A behavior pattern of this user has been shown in Figure 3. Event
e2 that is occurred in location L1 can read Resource S2 in location L2. When the
user as a physician works in L2 also can read resource S1 located in L1.

Example4 :
– Assigns association between two separated groups of events.

PATTERN Example4;
BEGIN

DEF Event = < User , Role , Action , Resource , Location >
E[] = NEW Event (7);
set1 = { E[1] .. E[3] };
set2 = { E[4] .. E[7] };
attVal = {<Action ,(" read")>, <Resource , ("S1", "S2")>, <

Location , ("L1","L2")>, <Role , "physician ">};
CALL Op1 (set1 , set2 , attVal) DO |event , Lvalue , Rvalue ,

Avalue|
event.Location = Lvalue;
event.Role = Rvalue;
event.Action = Avalue;

END
set1 = { E[1], E[3], E[6] };
set2 = { E[2], E[4], E[5], E[7] };
CALL Op2 (set1 , set2 , attVal) DO |event , value|

event.Resource = value;
END

END

/* define operation */
DEF Op1 (set1 , set2 , attVal)

Set1.EACH DO |item1|
YIELD (item1 , attVal[Location].value [0], attVal[Role

].value[0], attVal[Action]. value [0])
END
Set2.EACH DO |item2|

YIELD (item2 , attVal[Location].value [1], attVal[Role
].value[0], attVal[Action]. value [0])

END
END

20 Hassan Sharghi, Kamran Sartipi

DEF Op2 (set1 , set2 , attVal)
Set1.EACH DO |item1|

YIELD (item1 , attVal[Resource].value [0])
END

Set2.EACH DO |item2|
YIELD (item2 , attVal[Resource].value [1])

END
END

Separation is a category of behavior patterns in which events can be divided in
some groups. Meanwhile, the groups affect each other based on particular attribute
values. To describe a separation behavior pattern, we consider the workflow that
occurs in a clinic to treat a patient. The triage nurse’s duties typically consist
of measuring the pertinent vital signs and identifying the main complaint. She
documents the conditions of the patients and assigns an examination room to the
patient. She selects and notifies a specialist based on the patient’s main complaint.
The specialist is responsible for taking the patient’s history, performing an exam-
ination, making a diagnosis, and writing a prescription. After all ordered services
have been completed; the patient is discharged from the clinic. In the example

Table 3: Events and actions for example 5

EventID Action

e1 A1:measuring the vital signs
e2 A2:recording the main complaint
e3 A3:documenting in EHR
e4 A4:assigning an examination room
e5 A5:notifying the specialist
e6 A6:taking the patient’s history
e7 A7:performing an examination
e8 A8:making a diagnosis
e9 A9:writing a prescription

Table 4: Complaint and relevant role for example 5

Complaint Role

C1 R1: Orthopedist
C2 R2: Urologist

R3: Nurse

illustrated in Figure 4, the actions for treatment of a patient are divided into two
groups of sequential events, which are generated by two different roles: nurse and
specialist. The attribute value of role in the second group is defined by user who
has specific role in the first group, and it is assigned based on the value of the
attribute ”complaint”.

Example5 :
– Separation

PATTERN Example5;
BEGIN

An Expressive Event-based Language for Representing User Behavior Patterns 21

Fig. 4: Grouping of events based on a particular attribute value

DEF Event = < User , Role , Action , Patient , Complaint >
E[] = new Event (9);
set1 = { E[1], E[2], E[3], E[4], E[5] };
set2 = { E[6], E[7], E[8], E[9]};
attVal = {<Role , ("R1", "R2","R3")> }
Call Op1 (set1 , attVal) DO |event|

event.Role=attVal [Role]. value [0];
END
Call Op2 (set1 , set2) DO |event , v|

event.Role=v;
END

END

/* Define Operation */
DEF Op1 (set , attVal)

set.EACH DO |e|
YIELD (e)

END
END

DEF Op2 (set1 , set2)
Set2.EACH DO |e|

IF (VALUEOF (set1.event[2], Complaint)) == "C1"
THEN

YIELD (e, "R1")
IF (VALUEOF (set1.event[2], Complaint)) == "C2"

THEN
YIELD (e, "R2")

END
END

Causality represents a case in which event e2 occurs after event e1 not because of
the temporal (sequence) relation, but due to the structure of the behavior pattern,
and as a result of some attribute value evaluation. If events e1 and e2 satisfy such
a condition we say that e1 caused e2 and show this relation by a directed path
in the diagram starting at e1 ending at e2. Due to the definition of causality, the
first event (cause) should be prior the second event (effect); therefore, an overlap
exists between causal and sequence relations, as shown in Figure 5.

Chemotherapy consists of a sequence of events, such as the administration of
appropriate dosage of medication and laboratory examinations. The severity of
illness diminishes when dosage is increased. However at some point, the patient
begins to experience negative side effects associated with excessive dosage. The

22 Hassan Sharghi, Kamran Sartipi

Fig. 5: The causality relation between events in a sequence

oncologist is responsible for monitoring the treatment progress and control the
negative side effects through changing the dosage or prescribing other medications.

As an example, we consider the behavior pattern of an oncologist who pre-
scribes particular medication that patients need; also, she monitors regularly the
blood-cell count results to make decision about the medication’s dosage. If the
exam result indicates that the treatment has decreased the number of blood cells
below X quantity, the oncologist may decide to stop changing the medication and
order new prescription.

Table 5: Events and actions for example 6

EventID Action

e1 A1: Choosing a medicine
e2 A2: Calculating the dosage
e3 A3: Sending the prescription to pharmacy
e4 A4: Ordering an exam
e5 A5: Viewing the blood count result
e6 A6: Changing the medicine
e7 A7: Calculating the dosage
e8 A8: Sending new prescription to pharmacy
e9 A9: Continuing the treatment

Example6 :
– Causality relation

PATTERN Example6;
BEGIN

DEF Event = < User , Role , Action , Patient , Result >
E[] = new Event (9);
set1 = {E[1] .. E[9]};
attVal = {<Result , (value)> }
CALL Op1 (set1 , attVal);

END

DEF Op1 (set , attVal)
BEGIN

IF (VALUEOF (set.event[5], Result)) > attVal[Result].
value THEN

FOLLOWEDBY (set.event[5], set.event [9]);
END

An Expressive Event-based Language for Representing User Behavior Patterns 23

7 Conclusion

Behavior representation language and behavior pattern detection and processing
techniques are essential parts of user behavior analysis. User behavior is hidden
within the transactional data and behavioral properties are separated from each
other and separately recorded. Querying this kind of repositories relies on an ap-
propriate language in order to represent the specification of the desirable behavior
patterns. Moreover, a realistic dataset is required to evaluate the user behavior
pattern analysis methods as well as behavior pattern matching approaches. How-
ever, the lack of real production datasets is the main motivation to develop an
integrated framework to design a dataset with embedded user behavior patterns
and a series of utilities to verify the generated dataset. In this case, the data
analysts need a template to present the specification of the desirable behavior
pattern.

In this paper, we proposed a generic Behavior Pattern Language (BPL) as a
modeling language to represent attributes and properties of the behavior pattern
as well as to represent relationships between the behavior entities. Basically, this
language provides a generic template that can be utilized by analysts to represent
the features of a user behavior pattern. Moreover, it can be used to represent the
primitive elements and constraints of a specific pattern in order to construct be-
havioral data. The high level features and programming style of the BPL facilitate
the representation of the behavior pattern in detail.

BPL is declarative enough to illustrate different user behavior patterns, while
its programming-language syntax is human-understandable and easy to parse. BPL
includes some built-in operators and statements for expressing particular opera-
tions based on an unambiguous grammar to define the structure and semantics
of the behavior patterns. Based on the semantics of user behavior patterns, we
categorized the behavior patterns into five groups such as: sequence, association,
proximity, separation, and causality. The designed operators and features enable
the BPL for representing such groups. We aim at extending the work by providing
additional well-defined operators and features for language to represent more cate-
gories of user behavior patterns in different domains including user-system interac-
tions. Meanwhile, making the proposed semantics executable helps us to evaluate
the BPL expressions and it simplifies the evolution of the language. Moreover, an
executable operational semantics is clearly reflected in the interpreter.

24 Hassan Sharghi, Kamran Sartipi

A The syntax of BPL

Syntax of BPL
<BPL > ::= BEGIN <pattern_specification > END
<pattern_specification >::=< Declaration ><Operation >|
<Constraint >
<Declaration >::= <event declaration >|<pattern
declaration >|<set declaration >|<attVal declaration >
<event declaration >::= DEFINE Event =

< {<atttName >}+ >
<pattern declaration >::=< leftside > = <event type >
<event type >::= NEW Event(<Nnumber >)
<set declaration >::= <leftside > = { {<eventIdentifier

>}+ }
<attVal declaration >::= <leftside > = { {<valuelist >}+

}
<valuelist >::= <attName > {<value >}+
<leftside >::= <identifier > | <identifier >[]
<Operation >::= <operation header > <operation body >
<operation header >::= DEF <identifier > {<parametrs >}
<operation body >::= <statements > END
<statements >::= <foreach statement >|<ifstatement >|
<yield statement >|<block statement >|<call statement >
<yield statement >::= yield { <parameters >}
<block statement > ::= DO { <parameters >} <statements > END
<call statement >::= CALL <method name > { <parameters >}
[<block statement >]
<foreach statement >::= FOREACH <identifier > IN
<identifier > DO
<ifstatement >::= IF < expression > THEN <statements >
<Constraint >::= <ConstraintExpr >|<call statement >
<ConstraintExpr >::= <expression >
< comparable operator ><expression >
<comparable operator > ::= < | > | = | != | <=

| >=
<parametrs >::= set | event | <value >
< atttName >::= <identifier >
<identifier >::= a string of character
<eventIdentifier >::= event id
<Nnumber >::= a positive integer value
<value >::= integer | float | string

An Expressive Event-based Language for Representing User Behavior Patterns 25

References

1. Alvarez M (2015) Battling security threats from within your organization. In: Research
Report, IBM Security

2. Angeletou S, Rowe M, Alani H (2011) Modelling and analysis of user behaviour in online
communities. Springer Verlag Berlin Heidelberg, pp. 35–50

3. Anicic D, Fodor P, Rudolph S, Stuhmer R, Stojanovic N, Studer R (2010) A rule-based
language for complex event processing and reasoning. In: Web reasoning and rule systems:
Fourth International Conference, Springer-Verlag Berlin Heidelberg, pp. 42–57

4. Arasu A, Babu S, Widom J (2006) The cql continuous query language: semantic founda-
tions and query execution. The International Journal on Very Large Data Bases 15(2):121
– 142

5. Aztiria A, Augusto J C, Basagoiti R, Izaguirre A, Cook D J (2013) Learning frequent
behaviors of the users in intelligent environments. IEEE Transactions on Systems, Man
and Cybernetics, vol 43, no 6 pp. 1265–1278

6. Barga R S, Goldstein J, Ali M, Hong M (2007) Consistent streaming through time: A
vision for event stream processing. In: 3rd Biennial Conference on Innovative Data Systems
Research (CIDR), California

7. Brenna L, Demers A, Gehrke J, Hong M, Ossher J, Panda B, Riedewald M, Thatte M,
White W (2007) Cayuga: a high-performance event processing engine. In: ACM SIGMOD
international conference on Management of data, ACM, pp. 1100 – 1102

8. Bry F, Eckert M (2006) A high-level query language for events. In: IEEE Services Com-
puting Workshops(SCW’06), IEEE

9. Bui H-L (2009) Survey and comparison of event query languages using practical examples.
Ludwig Maximilian University of Munich

10. Cao L (2010) In-depth behavior understanding and use: the behavior informatics approach.
Journal of Information Sciences, vol 180, no 17 pp. 3067- 3085

11. Cao L (2014) Behavior informatics: A new perspective. IEEE Intelligent Systems pp. 62–80
12. Cugola G, Margara A (2012) Processing flows of information: From data stream to complex

event processing. ACM Computing Surveys (CSUR) 44(3):1 – 62
13. D Anicic S R P Fodor, Stojanovic N (2011) Ep-sparql: A unified language for event pro-

cessing and stream reasoning. In: in Conference on World Wide Web , Hyderabad
14. Fernndez M (2014) Programming Languages and Operational Semantics, A Concise

Overview. Springer-Verlag London
15. Fox A, Patterson D (2013) Engineering Software as a Service: An Agile Approach Using

Cloud Computing. Strawberry Canyon, LLC
16. Grieskamp W, Kicillof N (2006) A schema language for coordinating construction and

composition of partial behavior descriptions. In: SCESM06, Shanghai
17. Kirou A, Ruszczycki B, Walser M, Johnson N (2008) Computational modeling of collective

human behavior: The example of financial markets. Springer Verlag Berlin Heidelberg, pp.
33–41

18. Li G, H, Jacobsen A (2005) Composite subscriptions incontent-based publish/subscribe
systems. In: Middleware 2005: The series Lecture Notes in Computer Science, Springer-
Verlag NewYork, pp. 249–269

19. Luckham D (2012) Event Processing for Business: Organizing the Real-Time Enterprise.
New Jersey: Wiley

20. Pietzuch P R, Shand B, Bacon J (2004) Composite event detection as a generic middleware
extension. IEEE Network Journal 18(1):44 – 55

21. Plotkin G (1981) A structural approach to operational semantics. Technical Report,
Aarhus University, Denmark

22. Priya R V, Vadivel A (2012) User behaviour pattern mining from weblog. International
Journal of Data Warehousing and Mining, vol 8, no 2 pp. 1–22

23. Python (2015) The python programming language website Https://www.python.org/
24. Rieke R, Zhdanova M, Repp J, Giot R, Gaber C (2013) Fraud detection in mobile payments

utilizing process behavior analysis. In: IEEE International Conference on Availability,
Reliability and Security, IEEE, pp. 946 – 953

25. Rozsnyai S, Schiefer J, Roth H (2009) Sari-sql: Event query language for event analysis.
In: IEEE Conference on Commerce and Enterprise Computing, IEEE

26. Sandell N F, Savell R, Twardowski D, Cybenko G (2009) Hbml: A language for quantitative
behavioral modeling in the human terrain. In: Social Computing and Behavioral Modeling,

26 Hassan Sharghi, Kamran Sartipi

Springer, pp. 180–189
27. Stolfo S, Bellovin S, Hershkop S, Keromytis A, Sinclair S, Smith S (2008) Insider attack

and cybersecurity: Beyond the hacker. Springer, New York
28. Thomas D, Fowler C, Hunt A (2013) Programming Ruby 1.9 and 2.0, The Pragmatic

Programmers. LLC
29. Wang C, Cao L (2012) Modeling and analysis of social activity process. Behavior comput-

ing: modeling, analysis, mining and decision, New York, Springer, pp. 21–35
30. Wooldridge M (2000) Reasoning about rational agents. Cambridge: MIT Press
31. Yarmand M, Sartipi K, Down D (2013) Behavior-based access control for distributed

healthcare systems. Journal of Computer Security pp. 1–39
32. Zarri G P (2012) Behaviour representation and management making use of the narrative

knowledge representation language. In: Behavior Computing, London, Springer-Verlag,
pp. 37–56

33. Zerkouk M, Mhamed A, Messabih B (2013) User behavior and capability based access
control model and architecture. In: Springer Science and Business Media, Springer Science
and Business Media, pp. 291–299

