
SOCA (2011) 5:245–264
DOI 10.1007/s11761-011-0088-5

ORIGINAL RESEARCH PAPER

Modeling service representatives in enterprise systems
using generic agents

Mehran Najafi · Kamran Sartipi

Received: 31 December 2009 / Revised: 11 April 2011 / Accepted: 25 August 2011 / Published online: 16 September 2011
© Springer-Verlag London Limited 2011

Abstract As a common practice in business enterprise
systems, a service provider delegates a human agent to a
client site to serve the client. On the other hand, in a comput-
erized business application, enterprise organizations adopt
Service-Oriented Architecture (SOA), where an enterprise
agent is modeled as a software agent that cannot be transmit-
ted efficiently by service messages. In the proposed approach,
we extend the traditional architecture of SOA implementa-
tions to support generic and lightweight agents that reside at
the client site. These agents, that we call “Service representa-
tives”, can be customized and trained based on the provider
generated role description and knowledge to perform their
assigned tasks. In addition to providing innovative applica-
tions, such a technique allows for more sophisticated features
such as maintaining client privacy and separating the func-
tionality of the service and its delegated agent. To indicate
the variety of roles that can be done by the service represen-
tative, we provide three case studies to show how a local and
generic agent can be customized by different providers to
personalize financial advice, apply medical guidelines, and
verify credit card transactions.

Keywords SOA · Resident agents · Generic agents ·
Autonomous agents · Knowledge management ·
Context-aware services

M. Najafi
Department of Computing and Software, McMaster University,
Hamilton, ON, Canada
e-mail: najafm@mcmaster.ca

K. Sartipi (B)
Faculty of Engineering and Applied Science,
University of Ontario Institute of Technology (UOIT),
Oshawa, ON, Canada
e-mail: kamran.sartipi@uoit.ca

1 Introduction

Enterprise systems [1] are strategic communication assets for
large organizations such as banking, healthcare, and insur-
ance companies. An enterprise system is tightly coupled with
the internal structure, processes, and business model of an
organization. Architectures for enterprise systems must be
featured by major non-functional qualities such as simplicity,
flexibility, maintainability, reusability, and decoupling tech-
nology from functionality.

Service-Oriented Architecture (SOA) [2] is a high-level
and technology-independent concept that provides architec-
tural blueprints for enterprise systems. SOA-based architec-
tures focus on dividing the enterprise application layer into
services where each service has a direct relationship with a
business functionality of the enterprise. In SOA, enterprise
related tasks are addressed by interactions between service
clients and providers through services. A service provider
registers its services in a service registry. A service client
inquires the service registry to receive the description of an
appropriate service from a provider to satisfy its needs [3].
Further on, the requester and the selected provider(s) may
negotiate about the service usage terms [4]. After agree-
ment between client and provider, the client invokes the
service. Also, different services can be either composed
to serve a client [5], or customized based on a client’s
context [6].

In the real-world business domain, an enterprise organiza-
tion usually sends an agent or other personnel (e.g., a repre-
sentative, installer, maintainer, or trainer) to the client site to
deliver services locally. Accordingly, several organizational
units in enterprises (e.g., customer service, dealership, train-
ing unit, and delivery unit) require to send or employ agents
to serve the clients. Therefore, to provide a comprehensive
model of enterprises, SOA needs to model enterprise agents

123

246 SOCA (2011) 5:245–264

efficiently. Lack of this model may result in limiting the appli-
cations and functionality of SOA-based systems.

XML-based web services are the dominant platforms
for implementing SOA. A web service is defined by the
messages it exchanges. That is, a service client sends a
request message to a (web) service provider. Then, the
web service processes the request message and replies by
a response message. An enterprise agent can be modeled as
an autonomic agent [7] that is a computer program that can-
not be transmitted by communication messages efficiently.

In this paper, we extend the traditional architecture of
SOA implementations to enable enterprise systems to employ
generic agents as their service representatives. Instead of
sending different agents to the service client, we maintain
a lightweight and generic agent at the client site that can be
customized to act different roles and be trained to perform
different tasks on behalf of the service provider. The custom-
ization and training are performed based on the role descrip-
tion and knowledge that are generated by the service provider
and can be efficiently transmitted by the messages. The pro-
posed approach significantly enhances the capabilities of the
current SOA services. Since the proposed agent is local to
the service client, it can customize service responses based
on the client’s context; this mechanism reduces the security
and privacy concerns by eliminating the need to send client’s
private information to the provider. Finally, the proposed
agent represents a service provider at the client site, therefore,
we call this agent Service Representative (SR).

The organization of this paper is as follows. Related work
is discussed in Sect. 2. Service Representative is introduced
in Sect. 3. The proposed architecture and its details are dis-
cussed in Sect. 4. Section 5 introduces the developed proto-
type system. Three case studies in business, health care, and
insurance domains are explained in Sect. 6. The applications
and challenges of the proposed approach are discussed in
Sect. 7. Finally, conclusions and future work are discussed
in Sect. 8.

2 Related work

Web services have had quick growing success and broad
acceptance by the enterprise systems. However, there are still
a number of impediments that limit the wide applications of
web services in industry for which, agent-based techniques
seem to be proper solution for enabling dynamic collabora-
tion among e-Business systems. Therefore, there are growing
demands for using agents to evolve the current architecture
of SOA in several aspects as follows:

1. Agents as services The Intelligence Service System
(ISS) [8] is introduced as a framework for integrating
expert systems into service-oriented landscapes. In this

framework, a computerized expert system (intelligent
agent) acts as a service, which receives requests (includ-
ing query and training data) from business applications.
By using the training data, the expert system is trained
and returns its response to the query. Since agent plat-
forms [9] and web service platforms have similar compo-
nents (registry, descriptor, communication protocol, and
semantic language), AgWebs architecture [10] is pro-
posed to provide interoperability and interaction between
them.

2. Services as agents In ASMF [11], a network of web
services is modeled by a number of autonomic agents
(each service is wrapped into an agent). Furthermore,
these agents interact with each other to form service rela-
tionships. In addition to service agents, service brokers
are designed as autonomic elements. In [12], a role-based
architecture is adapted to facilitate the service definition
and relationship among SOA components.

3. SOA related tasks by employing agents Agents have
been used to facilitate SOA related tasks such as ser-
vice composition and service negotiation. In [13], during
a service composition process, software agents engage
in conversations with their peers to agree on the web
services that participate in this process. Moreover, agents
have been proposed as coordinators for web services. For
example, [14] introduces a service processing agent that
searches, selects and invokes service components for a
service composition, dynamically and according to the
user’s context.

4. Agent-based enterprise modeling Integration of agents
and web services has been proposed to model the
business aspects of enterprise systems. In [15], each role
or major function of an enterprise system is considered
as an agent (e.g., supplier agent, producer agent, coop-
erative agent, information service agent, and customer
service agent). Then each agent is wrapped into a web
service. The agents, when combined with web services,
can easily communicate with each other. As another
example, a distributed market place is modeled by agents
[16]. In this approach, service providers and clients are
considered as sellers and buyers, where an agent mod-
els each buyer or seller. These agents can negotiate with
each other until they reach an agreement.

In the proposed model, we address a new application of
collaboration between agents and services. The proposed
generic agents are in charge of delivering the functionality of
service providers, but, these agents are located at the client
site.

Mobile agents can physically travel across a network and
perform tasks on different nodes. Agent mobility requires
facilities that convert an agent into a form suitable for
network transmission (e.g., messages) and, on the receiving

123

SOCA (2011) 5:245–264 247

end, allow the remote system to reconstruct the agent. Java’s
object serialization accomplishes this conversion and recon-
struction. Concordia [17], Odyssey [18], and Voyager [19]
are examples of mobile agent frameworks based on java.
Also, mobile agents are suitable to be formally represented
using pi-calculus [20]. There are several security and privacy
issues to be considered in mobile agent-based computing.
Viruses and malicious attacks are other possible vulner-
abilities of mobile agent systems. Mobile agent architec-
tures also suffer from low efficiency as they need to send
the entire computer program or process. Moreover, flexi-
bility and interoperability concerns must be considered in
these approaches. These issues motivated us to customize
generic resident agents as opposed to transmitting mobile
agents.

3 Service representatives

We propose to extend the major components of SOA (ser-
vice provider, service requester, and service registry) with the
service representative, as it is shown in Fig. 1. In this sec-
tion, first we address the limitations of the existing SOA-
based technologies to model enterprise services. Then, we
introduce the notion of service representative that can be
implemented using resident generic agents to facilitate deal-
ing with these limitations.

3.1 Existing technology issues

As mentioned earlier, enterprise services are modeled based
on message exchanges. A service is typically defined using
WSDL technology that represents the request message that
the service provider receives and the response message that it
generates. This message-based structure imposes limitations
on enterprises that aim to use SOA to provide their services.
Some of these limitations are listed below.

Fig. 1 Proposed extended SOA model. The shaded area represents
the non-essential component (service registry) in the SOA model. This
model also supports the traditional service invocation where the service
provider returns the service response directly to the service client

Functionality limitation There are several types of
services that cannot be modeled efficiently by message
exchanges, such as

– Supervisory service which is called to control client
resources. A set of provider generated messages cannot
perform this task since it needs an executable platform at
the client site that has access to the local resources.

– Event-triggered service which is called by a client, and
the service will wait until a predefined event occurs at the
client site. Implementing these services by the message
exchange technology requires a permanent connection
between the provider and the client.

– Advertising service which introduces other services in
the enterprise while performing its task. A message-
based service sends a response message to the client
based on the query in the request message, without any
opportunity to advertise other services. Even if the pro-
vider embeds advertisement messages in the response
message, the client cannot extract them since it lacks
the required mechanism to predict that advertisement
messages will be received.

Privacy and security issues Since web services pro-
cess client requests at the provider site, the client may
need to include personal information in the request mes-
sages. This may cause significant privacy and security
breaches.

Needs for expertise As providers pack their responses in
the form of messages, the interpretation of these messages
is the client’s task. So, it is likely that a client lacks enough
expertise and knowledge to understand and use the service
responses. This situation gets worse as a client has to deal
with different providers in different domains.

Service competition Message-based web service provid-
ers are usually passive in dealing with enterprise issues.
They register the descriptions of their services into a
service registry, then it will be the responsibility of service
clients or coordinators to discover and compose those ser-
vices. Active providers are expected to address the enter-
prise issues more efficiently. For example, in the case of
service discovery, instead of analyzing the service descrip-
tions to find the best service for the client’s needs, the candi-
date services can compete and the client simply chooses the
winner.

Stateful services According to the SOA’s requirement,
web services should be designed to work in a stateless
fashion. However, in some situations, message exchange
technologies force developers to implement stateful services.
For example, efficient service negotiation techniques ask the
providers to keep track of a negotiation process initiated by
a client.

123

248 SOCA (2011) 5:245–264

Fig. 2 Relationship among data, information, knowledge, and the
service representative in the proposed model

3.2 Generic agent as service representative

Sending agents as service responses (mobile agents) could
facilitate dealing with the above limitations; however, the
message-based structure of web services does not allow pro-
viders to dispatch their agents efficiently. We propose an
extension to the existing SOA architecture that utilizes the
concept of “generic agents” that are resident at the client site
and are customizable and trainable for different roles. The
proposed architecture requires that the service provider only
transfers essential messages to customize and train a generic
agent, as opposed to sending the entire agent. Since the agent
executes at the client site and has access to the local resources
of the client, it can potentially violate the client security and
privacy. To prevent this, we limit the power of the agent by
restricting the resources that it can access.

The proposed architecture organizes the contents of the
communication messages into three segments “data”, “infor-
mation”, and “knowledge” [21], where: (1) data is defined as
raw fact; (2) information is the result of applying knowl-
edge on data; and (3) knowledge is an understanding of how
to process data to produce information, based on evidences,
experience and insight that can be represented as guideline,
decision-flow or patterns of data.

In this context, the service client asks to receive informa-
tion from the service provider by sending a request message.
The service client may receive the resulting information in a
response message directly from the service provider or indi-
rectly through the service representative. Therefore, the pro-
posed service representative can be viewed as an agent that
works in a knowledge management environment illustrated
in Fig. 2. The service representative, which is modeled by a
resident generic agent, provides the following facilities for
the SOA architecture.

More sophisticated functionality By introducing an exe-
cutable platform at the client site, service providers can
offer innovative services. For example, a service represen-
tative can be customized and trained to advertise other

Fig. 3 Structure of an autonomous software agent, called MAPE-K
(monitor-analyze-plan-execute over a knowledge base), proposed by
IBM [22]

provider’s services, control local resources or be activated
when an event occurs.

More privacy and security As the service represen-
tative has access to local resources at the client site, the
client does not need to send its personal data to the pro-
vider in order to receive customized services. Moreover, we
impose two constraints to preserve the client privacy and
security. First, the client determines local resources that the
service representative can access to them. Second, the com-
munication between the provider and its agent is one way
(from providers to service representatives), which implies
that the agent cannot return any of the client’s resources to the
provider(s).

Local and trainable experts A service provider can train
a generic agent to interpret its response messages in the forms
that a client can understand. Also, the agent can guide a
service client on how to use the service responses.

Active providers When a generic service representative is
customized and trained, it can represent its provider regard-
ing its assigned role in performing the enterprise related
tasks. Popular and high-demand tasks can be pre-defined as
standard tasks to be dispatched to the generic agents. For
example, in the case of service discovery, after customizing
generic agents by different providers, they can compete on
behalf of their providers to find the best service for a client.

Stateless services By employing the service representa-
tives, enterprise related tasks can be modeled for stateless
services efficiently. In other words, by assigning an agent
to each client, providers do not need to keep the state of
each request. For example, in a service negotiation scenario,
a provider sends essential negotiation skills to the service
representative to negotiate with the client about the terms of
using the service.

An enterprise agent can be modeled as an autonomic
agent, shown in Fig. 3, and hence can be defined using a
tuple of its components, as below:

– Sensors act as the agent input devices and obtain data
from the system.

123

SOCA (2011) 5:245–264 249

– Monitor scans the sensed data that is generated by the
sensors, to extract the relevant data.

– Analyzer analyzes or modifies the monitored data in a
way that the agent can use them.

– Knowledge Base contains knowledge sentences that other
agent components can use to perform their tasks.

– Executor processes the input data and generates the output
as information.

– Planner acts as the brain or controller of the agent that
specifies how the executor generates outputs or how and
when the knowledge base can be used.

– Effectors act as the agent’s output devices.

The generic service representative is defined based on
its generic components (generic sensors, generic monitor,
generic analyzer, generic execute, generic effectors, and
generic knowledge base). The agent planner (the only con-
crete component) is in charge of concertizing the generic
components based on the provided role (or role description)
and knowledge (or role knowledge) to perform the assigned
task. The role description is a list of the tasks, functions, or
responsibilities, and role knowledge is the required exper-
tise that the service representative needs to complete the
described tasks and responsibilities. The planner transforms
a generic service representative into a specific service repre-
sentative in two phases (customization and training) and then
executes the assigned task in the execution phase, as follows.

1. Customization In this phase, the planner sets up the agent
configuration (including SR sensors, effectors, and exe-
cuter) and creates an abstract process in the SR executer
based on the role description.

2. Training In this phase, the planner uses the role knowl-
edge to train the customized agent for the assigned role.
The role knowledge can be received from the provider
or/and extracted from the local knowledge base. Con-
sequently, the abstract process will be completed to
perform the specified tasks.

3. Execution In this phase, the customized and trained ser-
vice representative receives the client’s local data (via
the sensors and monitors), adapt them (via the analyzer),
executes the created process to generate the requested
information (by executer), and delivers the information
(via the effectors) to the client.

4 Extended SOA architecture

In this section, we extend the typical architecture of SOA
implementation to enable service providers to employ the
generic service representative at the client site. The proposed
architecture is illustrated in Fig. 4 and consists of three main
components: service provider, service client, and service

representative. The message transmissions among these com-
ponents are as follows. A service client sends a request mes-
sage (data) to receive a service response (information) from a
service provider. In a simple model of communication (with-
out using the service representative), the provider’s informa-
tion layer receives and processes the request message that
contains client data and returns the resulting information
back to the client application. This model represents tradi-
tional web services. In an agent model of communication
(with using the service representative), the client request is
processed at both provider and client-side as follows.

1. At the provider site, the customization and training
layers send a role description and required knowledge
to the service representative to process the client data
locally to generate the requested information.

2. At the client site, the generic service representative
receives the role description and knowledge segments
and evolves into a customized service representative.
Then, it performs the assigned tasks on the client
local data that are available through the communication
channel.

The specification for each component of this architecture
is given in the following subsections.

4.1 Service provider model

In contrast to the existing SOA models whose service
response messages have only one segment (information), the
proposed model introduces service response messages with
three segments (role, knowledge, and information). Accord-
ingly, the service provider consists of three layers that are
designed to work independently, and each layer is respon-
sible to provide one segment of the response message, as
follows.

Customization layer This layer specifies a role for
the generic service representative to customize and per-
form assigned tasks on behalf of the provider. First, a role
(e.g., negotiator, customizer, or adaptor) is assigned to the
generic agent. The role can be determined explicitly, i.e.,
the client specifies it in the request message, or implicitly,
i.e., the customization engine predicts it based on the pre-
vious similar situations. Then, this layer specifies the agent
configuration for the assigned role including the type and
specification of the required sensors, effectors, analyzer, and
executor. Moreover, the role specification includes a process
model describing the order in which a series of steps (called
tasks) needs to be executed.

The required knowledge for each step of the role pro-
cess can be provided either locally by the SR knowledge
base or remotely by the provider’s training layer. Since the
service provider can employ the service representative for

123

250 SOCA (2011) 5:245–264

Fig. 4 Proposed architecture. Based on the client’s request, the service provider generates a 3-segment response message to customize and train a
client-side generic agent as its representative to serve the client

different roles, the roles configuration and description are
kept in the role database. Conceptually, this layer can be
viewed as a technical support unit in an enterprise organi-
zation that informs a technician their responsibilities about
a customer or a product. The layering structure of the pro-
posed model implies that the customization layer should be
independent from the knowledge layer. It is based on the
fact that technicians are assumed to be knowledgeable when
they are assigned some tasks. They only receive the over-
all task description while their knowledge are provided from
other sources, such as education, training, past experiences,
or following strict guidelines.

Training layer This layer generates the knowledge
segment of the response message, based on the knowledge
model specified in the customization layer. The knowledge
is provided using knowledge representation techniques and
is stored in the knowledge base.

Information layer This layer essentially represents the
service provider in the traditional model of SOA, where the
service provider receives a request message from a client,
processes its data, and returns the result of the operation on
data (as information) back to the client via the information
segment of the response message. This layer provides the
compatibility of the proposed SOA model with the existing
model.

4.2 Service client model

A service client consists of a client application and a com-
munication channel, as follows.

Fig. 5 Example of a communication channel

Client application This is a traditional client application
that generates and sends request messages to service pro-
viders. The client application will receive the information
segment of the response message. This information can be
either consumed directly or passed to the service representa-
tive via the communication channel to be modified by the
service representative. The service provider publishes the
required communication channel schema for each client-side
web service in the service registry using WSDL documents.
In order to call a client-side web service, the client applica-
tion needs to put the client data in the communication channel
based on this schema.

Communication channel This channel consists of a
number of ports that are connection links to the internal
resources of the client application, as well as the means for
the client application to receive the result of the requested
task through the service representative. A client grants
permission to the service representative to read/write a num-
ber of its resources through this channel. The ports can be
input, output, or input/output (from the client point’s of view).
Input ports can be read by the SR sensors and output ports
can be written by the SR effectors. One instance of a com-
munication channel is shown in Fig. 5.

123

SOCA (2011) 5:245–264 251

4.3 Service representative model

As mentioned earlier, a generic service representative is
transformed into a specific service representative after
customization and training phases. The agent then modifies
the client’s internal resources through the communication
channel. A service representative is modeled by an autono-
mous structure as follows.

– The sensors and effectors are connected to ports in the
communication channel.

– The knowledge base contains the internal role knowl-
edge that is pre-loaded by the client or received from
external resources. The received knowledge from web
services can be stored to relieve web services from send-
ing them each time. Moreover, by storing basic knowl-
edge of a specific domain in the SR knowledge base,
we can develop domain-specific service representatives
where they can perform the domain relevant tasks effi-
ciently.

– The planner has functions to configure the agent and a
process engine to follow different steps of the assigned
role.

– The monitor and analyzer receive and convert the sensed
input data to a format that is understandable for the agent.

– The executor contains one or more knowledge model
instances that are specified in the customization phase
and trained in the training phase.

In the execution phase, the service representative performs
its assigned role as follows: (1) the sensors read client data
from the communication channel; (2) the relevant data are
extracted by the monitor, and the analyzer converts them
into a proper format for the service representative; (3) these
input data are fed to the knowledge models in the executor;
(4) the trained knowledge models will be applied to the data
to generate the output results; and (5) the results are written
back to the communication channel by the effectors.

4.4 Types of supported services

The proposed architecture is an extension to SOA, hence
it must cover the typical SOA services where there is no
need for the proposed service representatives. Moreover, the
service representative can work in two separate modes, there-
fore, the proposed architecture can model three types of ser-
vices, which are described below.

– Type 1 The service response only contains “informa-
tion segment” that is received by the client application,
while the role and knowledge segments are empty. Type 1
includes typical web services provided by traditional ser-
vice providers that do not need to employ agents in order
to serve the clients.

– Type 2 The service response contains “role” and “knowl-
edge” segments that are received by the service repre-
sentative, while the information segment is empty. Based
on the role description, the service representative applies
the received knowledge to the local client data and pro-
vides resulting information as the service response for the
client.

– Type 3 The service response contains “role”, “knowl-
edge”, and “information” segments. In this case, two sce-
narios are possible: (a) the service client uses the received
information and the service representative performs its
assigned task to provide additional information for the
client and (b) the service client redirects the information
to the service representative in order to be modified or
used during the service representative task execution.

Finally, because web services of Type 2 and Type 3 are
executed at the client-side, we call them client-side web
services as opposed to web services of Type 1 that are exe-
cuted at the server-side.

5 Prototype system

To evaluate the effectiveness and feasibility of the proposed
extend SOA model, we developed a prototype system of
the proposed architecture including the service representa-
tive as well as the extended service client and provider. This
prototype, namely SR version 1.0, is developed based on
J2EE 1.5 technologies and Apache Tomcat 6.0 application
server, which can be used by the service developers and
clients to develop and invoke the client-side web services,
respectively.

The developed service representative has a built-in Drools
[23] process engine (located in the SR planner component) to
execute the process included in the role segment of each ser-
vice response. The SR v1.0 uses the Drools rule flow as the
process model for the client-side web services. Moreover,
SR v1.0 can receive and understand knowledge sentences
that are compatible with PMML (Predictive Model Markup
Language) V3 [24], as follows.

– Rule-based model: It consists of rule-based knowledge
sentences in the form of if-then-else statements such as
the following pattern.

If Condition (clientData)
Then serviceResponse = Modify (initialResponse)

The above knowledge sentence states that if the defined
condition on the client data (clientData) is true, the
final service response (serviceResponse) is obtained by
applying the modification function to the received service

123

252 SOCA (2011) 5:245–264

response (initialResponse). Relevant rule-based state-
ments can be grouped into the same category to be evalu-
ated at the same time. Moreover, different rule categories
can be ordered to be executed sequentially. SR executer
uses the Drools rule-engine to apply the rules to the client
data using the forward chaining strategy. In this strategy,
a rule engine matches data against the rules to infer con-
clusions, which result in actions.

– Mining model: It represents the result of applying a data
mining algorithm to training data and the resulting model
can be used to analyze new data. A mining model is
specified by two elements: model signature and model
content. A model signature is in the form of a 3-tuple
< t ype, inputs, outputs > that represents the struc-
ture of the model. Each mining model has a number of
parameters whose values (assigned in the training phase)
specialize the model for a specific task. The model param-
eter values identify the content of each mining model. SR
Version 1.0 supports two types of mining models: neural
network [25] and decision tree [26].

– Neural network: It includes a network of simple pro-
cessing elements (called neurons) that can exhibit
complex global behavior, determined by the neurons
interconnections and their assigned weights. Learn-
ing in neural network involves adjustments to the
neurons and interconnection weights. There are two
different styles of training that are both supported by
SR Version 1.0. In incremental training, the weights
and biases of the network are updated each time an
input is presented to the network, while in batch train-
ing, the weights and biases are only updated after all
the inputs are presented. To support neural networks,
SR executer has the following components: (1) a neu-
ral network builder to build the structure of the model
based on the received model signature; (2) a neu-
ral network trainer to train the model based on the
model content; and (3) a neural network executor to
apply the model to the client data and returns the
result.

– Decision tree classifier: It is a predictive model that is
presented in the form of a tree. Decision tree learning
involves constructing a tree by recursively partitioning
the training data. In each step, a node is added to the
tree to represent a new partitioning. The nodes and
their edges represent the content of a decision tree.
Similar to the neural network model, the SR executer
contains: (1) a decision tree builder and (2) a decision
tree executor to work with decision trees.

Finally, SR version 1.0 is provided as two Java packages:
ServiceDeveloper and ServiceRep, which can be imported
into any service provider and client applications as follows.

– ServiceDeveloper package: a service developer uses this
package to develop a client-side web service graphically
using the Drools APIs and widgets. Figure 6 (top) repre-
sents a snapshot of the Client-side Web Service Developer
application, developed based on this package.

– ServiceRep package: a client application developer uses
this package to generate one instance of the service
representative and communication channel. Using the
provided APIs, the client application can supply the cli-
ent data to the communication channel, according to the
channel schema that is obtained from the service regis-
try. The communication channel schema is also passed
to the service representative instance to configure itself.
After configuration, the client invokes the client-side web
service from the provider and blocks itself to receive
the service response from the service representative and
through the communication channel. Figure 6 (bottom)
shows a snapshot of the Service Representative Manager,
which uses this package to monitor different phases of a
client-side web service invocation.

6 Case studies

In order to present and evaluate diverse applications of the
proposed service representative, we designed and developed
three case studies in different domains: banking, health care,
and insurance. Since web services of Type 1 in the proposed
SOA model refer to typical web services, we only focus on
web services of Type 2 and Type 3, discussed in Sect. 4.4.
To reduce the redundancy and cover different aspects of the
proposed model, similar parts are eliminated in the following
case studies.

6.1 Case study 1: highly secure financial adviser

In order to call a context-aware service, a service client shall
reveal her contextual information to the service provider
or a context manager, while this may violate her informa-
tion privacy and security. For example, to provide person-
alized advice, traditional financial advisers ask for personal
information from their clients (e.g., client’s portfolio or cash
information). In the first case study, we present a secure finan-
cial adviser in the context of stock market where a service
uses the service representative to personalize financial advice
without asking the client to send her personal information.
To call this web service, the client sends a request to the ser-
vice provider to receive financial advice and then provides
her financial information (client data) to the service represen-
tative through the communication channel. After processing
the client request, the service provider responds a message
with the following components.

123

SOCA (2011) 5:245–264 253

Fig. 6 (Top): snapshot of the
“Client-side Web Service
Developer”, used by a service
developer to develop a
client-side web service.
(Bottom): snapshot of the
“Service Representative
Manager”, used by a service
client to monitor a client-side
web service invocation
(e.g., a decision support service
in this case)

– Role segment: financial advice customizer.
– Knowledge segment: guidelines to personalize general

advise based on the client’s portfolio.
– Information segment: general financial advice.

Case study specification The process of generating finan-
cial advice could be very complicated and is out of scope
of our discussion. In this case study, we are interested
only in the personalization procedure, as follows. This
service receives client’s general preferences such as category
of investment (stock, option, or mutual fund); term duration
(short term or long term); and risk level (low, medium, or
high). However, the client keeps her sensitive information
local and private, such as client’s financial information (port-
folio and cash). Then, the service provider generates a set of
general financial advice (stock buy and sell advice) according
to the client preferences.

Fig. 7 Communication channel schema in the financial adviser case
study

Each general financial advice is in the form of either
Buy Advice = < Share Symbol, Min Percentage, Share
Price> or Sell Advice = <Share Symbol, Max Percentage,
Share Price>. A stock buy (or sell) advice recommends the
client to have minimum (or maximum) percentage of a spe-
cific share in their portfolio. The service provider assigns
the role of advice customizer to the service representative
to personalize the general advice based on the local cli-
ent’s financial information and by performing the following
operations.

123

254 SOCA (2011) 5:245–264

– For each sell advice: if the share symbol is not avail-
able in the client’s portfolio, ignore the advice. Oth-
erwise, compute the number of this share that the
client should sell based on the client’s portfolio and the
advice max percentage field.

– For each buy advice: if the client does not have enough
cash to buy the corresponding share, ignore the advice.
Otherwise, compute the number of this share that the cli-
ent should buy based on the client’s cash and the advice
min percentage field.

Service client The client application sends a request mes-
sage to receive financial advice. The request message does
not contain sensitive financial information of the client.
Moreover, the client application supplies its portfolio and
cash information into the communication channel (Fig. 7),
based on the communication channel schema published on
the service registry. Finally, the service client receives the
final customized advice from the service representative and
through the communication channel.

Service provider The three layers of the service provider
are specified as follows.

1. Customization layer specifies the role of financial advice
customizer for the service representative (shown in
Fig. 8). For this purpose, it first assigns a process of
applying two categories of rule-based knowledge mod-
els to the general advice. Moreover, client’s portfolio,
holding, and cash information are assigned to the SR
sensors, and an effector is considered to return the cus-
tomized advice to the client.

2. Training layer encodes the advice personalization knowl-
edge sentences (represented in Fig. 9) into the knowledge
segment of the response message.

3. Information layer is fed by either an automated system
or a financial expert who generates financial advice in

the specified format in Case Study Specification section,
such as the following advice.

Buy Advice: <MSFT, 12%, 25.12$>

Sell Advice: <AAPL, 5%, 344.00$>

This advice is assembled into the information segment
of the response message.

Service representative The SR planner uses the role seg-
ment of the service response to customize the generic service
representative to be a financial adviser by performing the fol-
lowing tasks.

1. Generates an abstract process with two sub-processes
based on their descriptions in the role segment. This pro-
cess is placed in the SR executer.

2. Assigns a rule-based knowledge model to each of the
generated sub-processes.

3. Connects the SR sensors to the Read ports of the commu-
nication channel to provide client personal data as inputs
for the knowledge models.

4. Connects the SR effectors to the Write port of the com-
munication channel to return the customized advice.

In the training phase, the planner loads each rule-based
model by the received customization knowledge from the
service provider. Finally, in the execution phase, the SR exe-
cuter runs the generated process where in each step of this
process, it applies the corresponding rules to customize the
general advice.

This web service can be more sophisticated if the SR ana-
lyzer is involved to convert the client data into a proper format
for the knowledge models. For example, if the client uses a
different currency than the general advice, the agent ana-

Fig. 8 Role description of the service representative in the financial adviser case study

123

SOCA (2011) 5:245–264 255

Fig. 9 Advice personalization knowledge

lyzer can exchange their currency before applying the mod-
els. Finally, the service representative stores the customiza-
tion knowledge into its internal knowledge base to relieve the
service provider from sending them each time.

The message exchanges between the service provider and
the service client is shown in Fig. 10. The XML schema of
the request and response messages are displayed in Figs. 11
and 12. By using these schemas, we developed WSDL
description of this web service and then we used a top-down
approach to implement the body of this web service.

6.2 Case study 2: agent-based clinical decision
support system

In this section, we present a case of a Clinical Decision
Support System (CDSS) in the context of vascular diseases.
A CDSS provides recommendations for both patients and
physicians by applying its medical guidelines to the per-
sonal health information, known as Personal Health Record
(PHR) or Electronic Medical Record (EMR). A typical CDSS
requires that the patients send their information that may vio-
late their privacy and security. Moreover, as a medical center
calls the same CDSS for different patients, transferring PHRs
over the network increases the network traffic significantly.
Based on the proposed model, a CDSS can employ the ser-
vice representative to apply its medical guidelines to the local
PHRs to improve the security and efficiently.

We modified a CDSS that is called Vascular Tracker (VT)
[27] to work based on the proposed model, as follows. A phy-
sician (service client) supplies the patient’s PHR information
(client data) into the communication channel and sends a

Fig. 10 Message exchanges between the secure financial adviser web
service and the service client

Fig. 11 Financial adviser request message schema (FinancialAdviser-
Request.xsd)

request message to receive medical advice. The CDSS (ser-
vice provider) response message contains three segments as
follows:

– Role: clinical decision support agent.
– Knowledge: medical guidelines.
– Information: none.

123

256 SOCA (2011) 5:245–264

Fig. 12 Financial adviser response message schema (FinancialAdviserResponse.xsd)

This service is categorized as Type 2 of the proposed ser-
vices and uses mining models as its knowledge models. Dif-
ferent parts of this system are described below.

Case study specification COMPETE III Vascular
Tracker (C3VT) [27] is a decision support system that assists
physicians to observe and ideally control patient’s different

123

SOCA (2011) 5:245–264 257

Fig. 13 Communication channel schema in the agent-based CDSS

risk factors within the domains of cardiovascular, diabetes,
hypertension, and dyslipidemia diseases. C3VT’s database
contains a large body of medical guidelines collected using a
methodology known as evidence-based practice. The clinical
algorithms are so fine-tuned that cover different cases of most
individual patients and is confidently used by a large group of
physicians. The VT guidelines are categorized into diabetes,
hypertension, dyslipidemia, coronary artery disease, cere-
brovascular disease, peripheral vascular disease, and healthy.
Each category has a number of corresponding guidelines that
can be applied to a patient’s PHR in a specific order. As
a result, each medical guideline generates recommendation
messages for both physicians and patients. Moreover, VT
defines a schema for the request messages including vascu-
lar-related PHR information such as blood pressure, HBA1C
results, eye exam, weight, and diet that must be provided by
a caller to use this CDSS. In this case study, we use the ser-
vice representative to apply the medical guidelines (received
them from VT) to a local PHR at the client site.

Service client The client application sends a request mes-
sage to receive medical advice and recommendations. The
request message does not contain the patient’s information
and only identifies the category of VT supported diseases that
apply for the patient. The client supplies the patient’s infor-
mation into the communication channel (Fig. 13), based on
the VT schema published on the service registry. There are
also two ports of the communication channel that allow the
patient and physician to receive the medical recommenda-
tions and alert from the service representative.

Service provider The developed service provider is a
modified version of the VT CDSS where its three-layer archi-
tecture enables VT to offer high privacy for their clients.
Since this service is of Type 2, the data are provided to the
SR by the client application and therefore the information
layer is not required. The customization and training layers
of the service provider are specified as follows.

1. Customization layer specifies the role of CDSS agent
for the service representative based on the received VT
diseases category from the client. A SR role descrip-
tion to provide recommendations in the case of diabetic
patients is displayed in Fig. 15. The corresponding pro-
cess defines a sequence of medical guidelines that should
be applied to the relevant patient’s PHR. Moreover, this
layer defines the SR configuration to perform this role
as follows. It assigns a sensor for the relevant patient’s
PHR and two effectors for the patient and physician rec-
ommendations. Finally, this layer specifies the required

knowledge model in each step of the process that includes
the type of the model (decision tree), model inputs (rele-
vant PHR information), and model outputs (patient and
physician recommendations). In other words, it specifies
each knowledge model by defining its signature.

2. Training layer provides the specified medical guide-
lines in the customization layer where each guideline is
encoded as a decision tree. A corresponding decision tree
to a set of VT medical guidelines is displayed in Fig. 14.
This guideline gives recommendations to both patient
and physician about the result of a blood test (Hb1Ac)
with considering three patient PHR fields. The decision
tree parameters including the decision and split nodes
information (i.e., model content) are serialized into the
knowledge segment of the response message.

Service representative The planner customizes the
generic SR by connecting the sensors and effectors to the cor-
responding ports of the communication channel and instan-
tiating a process with the corresponding sub-processes in
the SR executer. To complete the customization phase, the
planner assigns one decision tree builder object to each sub-
process. Also, the received knowledge is stored in the SR
knowledge base that can be reused in the next service calls. In
the training phase, each decision tree is reconstructed based
on the received knowledge to represent an executable med-
ical guideline at the client site. Finally, the executer applies
each decision tree to the patient’s PHR and the outcome (rec-
ommendations) is written to the communication channel.

6.3 Case study: customizable credit card fraud detector

In this section, we present a case of fraud detection in the con-
text of credit card transaction systems. The legal or fraud pat-
terns in the credit card transactions can be identified by either
symbolic or numerical models. A symbolic approach uses
known fraud patterns while a numerical model uses a neural
network to classify the transactions. In general, a sophisti-
cated fraud detector system requires a large number of train-
ing instances from different locations of the covered region
which may have different patterns of fraud. In such cases, a
fraud detector that is customized based on local data seems
to be more proper and accurate for small and medium size
organizations such as a bank or an insurance company. In this
case study, we are interested in a fraud detector web service
that takes local data into account to verify credit card transac-
tions. Based on the proposed model, a service provider can
use the service representative to build a customized fraud
detection model at the client site, as follows:

A service client gives permission to the service repre-
sentative to read the local transaction information via the
communication channel and sends a request message to
receive a fraud detector service. The fraud detector service

123

258 SOCA (2011) 5:245–264

Fig. 14 Decision tree representing a VT medical guideline that corresponds to one step of the process described in Fig. 15

Fig. 15 Role description for the service representative to perform as a CDSS agent

responds with a message containing three segments as fol-
lows:

– Role: credit card fraud detector.
– Knowledge: symbolic fraud detection model and guide-

lines to build a local numerical fraud detection model.
– Information: none.

In this case study, we use both the rule-based and mining
model knowledge to train the service representative. Differ-
ent parts of this system are described below.

Case study specification Each transaction is represented
as a tuple x of features (x =< x1, . . . , xn >). Fea-
tures can be symbolic (e.g., type, address) or numerical
(e.g., time, money). Consequently, the symbolic and numer-
ical fraud detectors operate on symbolic and numerical

123

SOCA (2011) 5:245–264 259

features, respectively. Two metrics are usually used to eval-
uate a fraud detector system as follows: precision indicating
the number of found fraud transactions relative to the total
tested transactions; and confidence indicating the accuracy of
the method. While, the symbolic model offers high precision,
the numerical model yields higher confidence. A sequential
combination of these models is reported in [28] to provide
both high precision and confidence. Instead of applying a
general fraud detector model to a target transaction at the
provider site, the proposed approach uses the service repre-
sentative agent to customize and apply a fraud model to the
local transactions at the client site.

Service client The client application connects a read port
of the communication channel to its database containing the
log of the collected local transactions (training data). The
target transactions to be checked for fraud (testing data) are
also supplied into a read port of the communication channel.
There is also a port that the service representative writes the
results of the local transactions verification for the client. The
structure of the communication channel is shown in Fig. 18.
Therefore, the client application only sends a request mes-
sage to the service provider, which does not include local
transaction information.

Service provider The service provider is a modified ver-
sion of the sequential fraud detector presented in [28]. Similar
to the second case study, this web service is categorized as
Type 2 and its required data is supplied solely by the client.
The customization and training layers of this service provider
are specified as follows.

1. Customization layer defines a role for the service rep-
resentative to customize a numerical model using client
data and then apply this model. Moreover, the SR is asked
to reconstruct a symbolic model from the received model
parameters from the service provider and then apply this
model to the local transactions. The final verification will
be obtained by a selection model. Figure 16 illustrates
the role description where the assigned process includes
one mining and two rule-based knowledge models as
follows.

– Model I is an incremental Radial Basis Function
(RBF) model to represent a numerical fraud detec-
tor. This model is generated and customized at the
provider and client site, respectively.

– Model II is a rule-based model to represent a symbolic
fraud detection model.

– Model III is a rule-based model that acts as an arbi-
trator between the other two models.

2. Training layer generates or extracts the model content
for each specified model in the customization layer, as
follows.

– Model I: It is initiated based on the provider training
transactions. In this case study, each training instance
is a tuple of (x1, x2, . . . , x8, y) where xi represents
the amount of money that a credit card holder spent
in the i th week and y represents the legal or fraud
result for this instance. After training the RBF, its
parameters are encoded by PMML and are put in the
knowledge segment of the response message.

– Model II: It is a number of if-then-else rules that rep-
resent the relations between the symbolic features and
fraud. These rules can be obtained based on the gen-
eralization techniques described in [28] and is shown
in Fig. 19. In this technique, fraud transactions are
compared with each other to find the similar pairs.
Each pair is then merged into a generalized rule by
replacing a non-identical feature by a don’t-care sym-
bol “*”.

– Model III: It describes a sequential combination of
Models I and II that improves the performance met-
rics of the fraud detector. These rules are listed in
(Fig. 17), where the decisions for fraud by the sym-
bolic model are checked additionally by the numer-
ical model to increase confidence and decrease the
number of false alarms.

Service representative After setting the SR configuration
in the customization phase, the SR planner trains the three
specified knowledge model as follows. The numerical model
(Model I) is initially built from the received model parame-
ters and then it is completed by the client training transactions
received from the SR sensors. Moreover, the symbolic model
(Model II) and the selection model (Model III) are loaded
with the received rules. In the execution phase, the service
representative applies the customized numerical model and
the symbolic model to the local transactions, and finally, the
adjusted result that is obtained by applying the third model
is written back into the communication channel to be used
by the client.

6.4 Evaluation

To compare the proposed client-side web services with the
traditional server-side web services, we developed an equiv-
alent traditional web service for each of the described case
studies, as follows.

1. A financial adviser web service that takes client’s portfo-
lio and cash information and returns personalized advice
to the client.

2. A clinical decision support service that takes patient’s
PHR information; applies the vascular tracker guide-
lines; and returns recommendations for both the patient
and the physician.

123

260 SOCA (2011) 5:245–264

Fig. 16 Role description for the service representative in the customizable fraud detector case study

Fig. 17 Required knowledge for Model III, in the customizable fraud detector, to combine the verification results obtained by a symbolic and a
numerical approach

3. A customizable credit card fraud detector service that
takes transaction records stored in the client database as
well as the target transaction and returns the verification
result to the client.

As our evaluation metrics, we used the QoS parameters to
compare proposed client-side and traditional server-side web
services. The QoS parameters for web services refer to the
quality aspect of a web service. These parameters are used as
constraints when a service client searches for the best service.
Service Level Agreements (SLA) are also defined based on
the QoS parameters. These may include performance, avail-
ability, scalability, accuracy, accessibility, security, privacy,
throughput, and network-related QoS requirements.

The traditional web services (Type 1) are differentiated
from the proposed services (Type 2 and Type 3) by the plat-
form where the client data are processed. While the former
integrates all the processing at the server platform, the latter
distributes the processing between the server and client plat-
forms. This directly affects the performance parameters (e.g.,
response time), network-related QoS metrics (e.g., message

Fig. 18 Communication channel schema in the customizable credit
card fraud detector case study

size), and the client privacy. There are also QoS parameters
that depend on the performance and network parameters such
as throughput, scalability, and capacity. However, other QoS
metrics are independent of client-side or server-side process-
ing of client data such as accessibility, security, accuracy, and
availability. Then, we considered three service parameters as
our evaluation criteria: service message size, service response
time, and client privacy, because they are representative for
QoS comparison of client-side and server-side web services.

Client privacy is defined as the client ability to keep her
sensitive and confidential data local and private. The pro-
posed web services process confidential client data locally
using the service representatives, while the traditional web
services process confidential client data at the provider site.
The comparison results are illustrated in Table 1.

123

SOCA (2011) 5:245–264 261

Fig. 19 Credit card fraud patterns reported in [28]. Each column represents one symbolic transaction feature

Table 1 Client privacy comparison results

Privacy Proposed Traditional web service
web service

Case study 1
√ ×

(Revealing financial information)

Case study 2
√ ×

(Revealing PHR information)

Case study 3
√ ×

(Revealing credit card information)

Table 2 Message size comparison results

Message size Proposed Traditional web service (kB)
web service (kB)

Case study 1 8 11

Case study 2 12 7

Case study 3 6 835

Message size (MS) is the total size of service request and
response messages that is defined for a web service as fol-
lows.

MS(s) = SizeRequest(s) + SizeResponse(s) (1)

The traditional approaches require transferring complete
client data from service clients to service providers. On the
other hand, the proposed web services process client data
locally that implies the MS is independent of the size of the
client data. Table 2 illustrates the MS comparison of the tra-
ditional and proposed web services for the described case
studies.

Based on Table 2, the traditional and proposed web ser-
vices represent compatible Message Size for the first and
second case studies. However, the proposed approach outper-
forms the traditional approach in the third case study where
the client has to send her entire local database to the service
provider in order to receive customized verification results.

The proposed approach improves the Total Message Size
(TMS) significantly, which represents the total size of service
messages where the same service is called multiple times by
a service client. In the traditional web services, the TMS is

equal to multiplication of Message Size by the number of ser-
vice calls. While in the proposed web services, the received
knowledge is stored in the SR knowledge base that results in
reducing the size of the response messages. Figure 20 (top)
compares the Total Message Size of the proposed and tradi-
tional web services for each case study.

Response Time (RT) is divided into two factors: Network
time (N) and Process time (P) and is defined for a web service
as follows.

RT(s) = N (s) + P(s)

Network time is the amount of time required to transfer
request and response messages that depends on both network
bandwidth and message size. Process time is the amount of
time it takes a web service to perform its designated task.
Since service providers use more powerful CPUs, traditional
approaches have less process time. On the other hand, the
proposed web services require smaller messages results in
less network time.

For this case study, we obtained the process time, P(s), for
the three case studies using a 2.4 GHZ dual-core CPU. More-
over, we assumed the service provider has a CPU that is twice
faster than the service client. Finally, there is a 128 KByte/Sec
link connects the service client to the service provider.

Table 3 shows the Response Time comparison between the
proposed and the traditional web services. These results show
the proposed approach overcomes the traditional approaches
when the client data grows.

Similar to the Total Message Size metric, we compared
the Total Response Time (TRT) of the proposed and tradi-
tional web services in the context of these case studies. This
comparison, which is illustrated in Fig. 20 (bottom), confirms
that client-side processing of client data improves the TRT.

7 Discussion

The proposed client-side web services are differentiated from
the traditional server-side web services as they can process
client data locally using local and generic agents. In this sec-
tion, we list a few important issues such as the applications
and challenges of the proposed web services.

123

262 SOCA (2011) 5:245–264

Fig. 20 (Top) Total message size and (bottom) Total response time comparisons of the traditional and the proposed web services where they
implement the described case studies

7.1 Applications

The proposed web services do not intend to replace the tradi-
tional web services. However, web services can be developed
efficiently and securely using service representatives in the
following cases.

1. Context-aware services, where the services operate
according to the available contextual information from
the environment. If a context-aware web service can be
modeled with a pair of (general service response, cus-
tomization knowledge), it is eligible to be delivered by
the service representative. Therefore, the privacy and
security aspects of these services will be improved (Case
Study 1).

2. Sensitive and confidential client data, where these data
should be processed locally (Case Study 2).

3. Large volume client data, where sending these data to a
service provider requires large messages (Case Study 3).

4. Dynamic environments, where the client’s context is
changing over time. If the context (e.g., location) is
changing frequently, a traditional service must be called
for each change, which increases the network traffic as
well as the service cost. In contrast, the SR utilizes the

role knowledge to generate dynamic service response for
each change of the context.

5. Dynamic services, where the provider’s knowledge is
changing over time. The SR enables providers to separate
the required knowledge from the service implementation
and facilitates change management.

The proposed web services are described by WSDL doc-
uments, which can be stored in XML repositories. A WSDL
description for a traditional web service includes what the
web service does, how it is accessed, where it is located,
and name and type of the service parameters. The traditional
WSDL documents are sufficient enough to describe the pro-
posed services where the service parameters are divided into
two parts: local that are used by the service representative and
remote that are sent to the service provider to be processed
remotely. As a result, the web services that employ service
representatives to process client data can be discovered both
statically (at design time) or dynamically (at run time) using
existing WSDL-based approaches.

Finally, the proposed client-side web services can also
be composed with the traditional server-side web services
using BPEL models. To invoke a client-side web service, a
BPEL process first calls the web service and sends its remote
parameters. When it receives the service response message

123

SOCA (2011) 5:245–264 263

Table 3 Response time comparison results

Response time Proposed Traditional
web service (ms) web service (ms)

Case study 1 131 112

Case study 2 125 75

Case study 3 207 6,612

that includes the role description and the required knowl-
edge and information, it will forward it to the client-side to
be executed by the service representative.

7.2 Challenges

Although the distributed service processing offered by the
service representative improves the SOA performance in sev-
eral cases, it imposes a number of challenges for both service
client and service developer which should be addressed.

– Service provider privacy: Required knowledge for
the service representative can be enterprise assets and
resources that revealing them may violate the enterprise
privacy. To prevent this security vulnerability, a service
provider can use one of the following techniques.

1. Enterprise knowledge can be divided to be applied
locally (at the provider side) by the service or exter-
nally (at the client-side) by the service representa-
tives. Therefore, the critical knowledge (e.g, market
analysis in Case Study 1) remains at the service pro-
vider, while the non-critical knowledge (e.g., advice
customization guidelines in Case Study 1) will be
sent to the service representative.

2. The service client only receives the service response
from the service representative. Therefore, the cli-
ent does not have access to the transferred knowl-
edge between the service provider and representative.
Consequently, encryption techniques can be used for
data transmissions between a service provider and
representative to improve the enterprise privacy.

– Service client adaptation To call the proposed web ser-
vices, the service client is required to install a generic
service representative with the corresponding communi-
cation channel, which increases the client-side complex-
ity. However, the current version of the service repre-
sentative (SR version 1.0) needs a few megabytes (about
3 MB) hard disk space and offers reasonable computing
speed (discussed in Evaluation section). Moreover, after
the generic service representative installed, the service
client can invoke different client-side web services.

– Testing: The service representative executes a process
on behalf of the service provider at the client site. There-
fore, testing and error handling procedures are more chal-

lenging for service developers since they do not have
direct access to the client’s resources and execution plat-
form. An effective evaluation technique is required that
includes test cases for different client’s platform and con-
text. Moreover, the interaction between the client appli-
cation and the service representative should be evaluated
using proper test cases. Finally, evaluation techniques
for the Rich Internet Applications (e.g., Java Applets or
Microsoft Silverlight) [29] can be useful for testing the
client-side web services.

– Interoperability: Interoperability of service client and
provider is another challenge in using the client-side web
services. Traditional web services force service clients to
send service parameters that are understandable for the
service provider. However, in the proposed approach, the
service representative uses its analyzer component to con-
vert the client data into an understandable data format for
the service representative which may increase the interop-
erability issues. To support different types of client data,
the service provider is required to send the correspond-
ing conversion functions (as the knowledge) to the service
representative to be applied by the SR analyzer.

8 Conclusions and future work

In this paper, we presented a novel model for SOA-based sys-
tems that enables enterprise organizations to delegate their
agents to operate on the client platform. According to the
proposed model, a generic and client-side service represen-
tative applies the knowledge that is received from the service
provider to the client data and delivers the requested infor-
mation to the client. To support this model, we also proposed
an architecture that introduces an executable platform at the
client site for service providers which enhances the privacy
and security aspects of web services. In addition to existing
web services, the proposed approach models two novel types
of services.

Different types of web services are complementary and a
business service can be implemented based on one or more
of these types. As a future work, we will define cost functions
for each of the involved factors (e.g., testing, response time,
interoperability, and complexity) to guide service developers
about the proper type for each business service. Moreover,
we intend to assign the service representative more SOA rel-
evant roles such as negotiator to develop new approaches
for SOA related tasks. The proposed service representative
can be employed by collaborating service providers to per-
form a composite role at the client-side. This motivates us to
extend our model to introduce the concept of client-side ser-
vice composition. Finally, we are also working on a web ser-
vice extension that supports service representatives directly.

123

264 SOCA (2011) 5:245–264

Acknowledgments The authors would like to thank COMPETE
group for the use of their Vascular Tracker (VT) materials for our exper-
iments.

References

1. Soja P, Paliwoda-Pekosz G (2009) What are real problems in enter-
prise system. Ind Manag Data Syst 109(5):610–627

2. Krafzig D, Banke K, Slama D (2005) Enterprise SOA: service ori-
ented architecture best practices. Prentice-Hall, USA

3. Le D, Eck SA, Cao T (2007) A survey of web service discovery
systems. Int J Inf Technol Web Eng 2(2):65–80

4. Hung PCK, Li H, Jeng J (2004) WS-Negotiation: an overview of
research issues. In: The 17th annual Hawaii international confer-
ence on system sciences, Hawaii, pp 10–18

5. Dustdar S, Schreiner W (2005) A survay on web service composi-
tion. Int J Web Grid Serv 1(1):1–30

6. Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-
aware systems. Int J Ad Hoc Ubiquitous Comput 2(4):263–277

7. Huebscher MC, McCann JA (2008) A survey of autonomic com-
puting—degrees, models, and applications. ACM Comput Surv
40(3):1–28

8. Alessandrini M, Lippe W, Nuesser W (2008) Intelligent service
system: an agent-based approach for integrating artifical intelli-
gence components in SOA landscapes. In: International confer-
ence on web intelligence and intelligent agent technology, Sydney,
pp 496–499

9. Sycara K, Paolucci M, Soundry J, Srinivasan N (2004) Dynamic
discovery and coordination of agent-based semantic web service.
IEEE Internet Comput 8(3):66–73

10. Lee S, Choi K, Shin H, Shin D (2007) Ag Webs: web services
based on intelligent agent platform. In: The 9th international con-
ference on advanced communication technology, Phonex, Korea,
pp 353–356

11. Cheng Y, Leon-Garcia A, Foster I (2008) Toward an autonomic
service management framework: a holistic vision of SOA, AON,
and autonomic computing. IEEE Commun Mag 46(5):138–146

12. Xu B, Yang X, Shen Y, Shanping L, Ma A (2008) A role-based
SOA architecture for community support systems. In: International
symposium on collaborative technologies and systems, Irvine,
pp 408–415

13. Maamar Z, Mostefaoui S, Yahyaoui H (2005) Toward an agent-
based and context-oriented approach for web services composition.
IEEE Trans Knowl Data Eng 17(5):686–697

14. Yamato Y, Ohnishi H, Sunaga H (2008) Study of service process-
ing agent for context-aware service coordination. In: IEEE inter-
national conference on service Computing, Hawaii, pp 275–282

15. Xiang L (2007) A multi-agent-based service-oriented architecture
for inter-enterprise cooperation system. In: Second international
conference on digital telecommunications, Silicon Vally, pp 22–32

16. Khalili A, Badrabadi A, Khoshalhan F (2008) A framework for
distributed market place based on intelligent software agents and
semantic web services. In: IEEE international congress on services
part II, Hawaii, pp 141–148

17. Wong D, Paciorek N, Walsh T, DiCelie J, Young M, Peet B (1997)
Concordia: an infrastructure for collaborating mobile agents. In:
MA ’97: proceedings of the first international workshop on mobile
agents, Springer London, pp 86–97

18. Wong D, Paciorek N, Moore D (1999) Java-based mobile agents.
Commun ACM 42(3):92–102

19. Pham V, Karmouch A (1998) Mobile software agents: an over-
view. IEEE Commun Mag 36:26–37

20. Sangiorgi D, Walker D (2001) PI-Calculus: a theory of mobile pro-
cesses. Cambridge University Press, New York

21. Zins C (2007) Knowledge map of information science. J Am Soc
Inf Sci Technol 58(4):526–535

22. IBM Corporation (2004) An architectural blueprint for autonomic
computing, 4th edn. Technical report

23. Proctor M, Neale M, Lin P, Frandsen M (2008) Drools documen-
tation. Technical report. JBoss.org

24. Raspl S (2004) PMML version 3.0—overview and status. In: pro-
ceedings of the ACM workshop on data mining standards, services
and platforms, Philadelphia, pp 18–22

25. Haykin S (2008) Neural networks and learning machines. Prentice
Hall, New York

26. Han J, Kamber M (2000) Data mining: concepts and techniques.
Morgan Kaufmann Publishers, San Francisco

27. Compete III Vascular Tracker website. http://www.competestudy.
com/

28. Brause R, Langsdorf T, Hepp M (1999) Neural data mining for
credit card fraud detection. In: ICTAI ’99: proceedings of the 11th
IEEE international conference on tools with artificial intelligence,
IEEE Computer Society, Washington, p 103

29. Raffelt H, Margaria T, Steffen B, Merten M (2008) Hybrid test of
web applications with webtest. In: Proceedings of the 2008 work-
shop on testing, analysis, and verification of web services and appli-
cations, ACM, New York, pp 1–7

123

