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Abstract—The proliferation of IoT networks has significantly
increased the potential for cyber attacks. Deep learning models
have shown effectiveness in detecting complex attacks; however,
they face challenges related to imbalanced datasets and a lack
of interpretability. In this work, we propose an enhanced and
interpretable deep learning approach that addresses the common
challenges of data imbalance and interoperability. To tackle the
data imbalance issue, we employ CTGAN, a technique that
expands the dataset by generating synthetic samples for the
minority class traffic. Additionally, we utilize Boruta Shap for
feature extraction, resulting in a reduced number of features and
enhancing the efficiency of detection. Moreover, we incorporate
SHAP for model explainability. We validate the results obtained
from SHAP by conducting a thorough analysis of each attack type
in both the NSL-KDD and UNSW-NB15 datasets. Furthermore,
we conduct a comparative evaluation of our framework against a
previous approach, demonstrating that our proposed framework
outperforms the previous one in accurately detecting attacks for
majority of class types.

Index Terms—Explainable intrusion detection, deep learning,
IoT security

I. INTRODUCTION

The Internet of Things (IoT) is an evolving communication
technology that gathers information from diverse sources and
provides remote functionality [1]. Recently, IoT devices and
sensors have witnessed significant growth across several areas
such as intelligent transportation systems, healthcare systems,
and smart homes. Despite the numerous advantages offered by
these IoT systems, minimal consideration is given to security
during the design and development phase by manufacturers to
meet the market demands [2].

Intrusion detection plays a crucial role in strengthening se-
curity within IoT networks. By implementing intrusion detec-
tion systems (IDS), organizations can proactively monitor and
analyze network traffic to identify potential security breaches
or malicious activities. Recently, there has been a significant
increase in the adoption of machine learning-based IDS in
IoT networks, both in industry and academia [3]-[7]. Machine
learning or deep learning-based IDS are trained on a dataset
of normal and malicious behaviors. After training, these sys-
tems can learn to detect anomalies or potential intrusions
automatically. Machine learning-based detection can adapt and
improve over time as new threats emerge, making it a valuable
approach for IoT security. While notable advancements have
been made in intrusion detection through the use of Al-

powered techniques, there are still obstacles when it comes
to deploying them in real-world systems.

One of the primary obstacles faced in deep learning-based
intrusion detection in IoT is the issue of data imbalance.
Typically, the majority of network flow data consists of normal
traffic, while instances of malicious behavior are relatively
rare. Moreover, most of the available data pertains to well-
known attacks such as Denial of service (DoS) and Probe,
while other specific attacks are extremely infrequent. As a re-
sult, deep learning-based IDS may struggle to sufficiently learn
the characteristics of specific network threats. Additionally,
deep learning models are inherently non-transparent, making it
challenging to understand the reasoning behind their decisions.

To address the aforementioned challenges, we introduced
an innovative deep learning-based intrusion detection system
for IoT networks. Our proposed framework effectively tackled
both the data imbalance and explainability issues. We accom-
plished this by employing conditional generative adversarial
networks (CTGANSs) [8] to generate realistic synthetic net-
work traffic data, specifically targeting minor attack traffic
instances. Additionally, the paper incorporated the SHapley
Additive exPlanations (SHAP) [9] mechanism to enhance the
transparency and resilience of deep learning-based IDS in IoT
networks. Our framework not only enabled the interpretation
of decisions made by the deep learning-based IDS but also
facilitated feature selection. This feature selection capability
reduces performance costs while maintaining high detection
accuracy.

The rest of this paper is organized as follows. Section II
summarises various related works. Section III discusses the
proposed framework. Section IV presents the experiments and
results. Finally, Section V concludes the paper.

II. RELATED WORK

Several studies have examined the utilization of deep learn-
ing methods in IDS for IoT networks or networks in general.

In the paper [10], a deep learning approach based on bidi-
rectional long short-term memory (LSTM) architecture was
utilized for intrusion detection in the context of the Internet
of Vehicles (IoV). The proposed framework was evaluated
using the UNSW-NB15 dataset [11] and car hacking data
source. Impressive results were obtained, with the framework
achieving a high accuracy rate of 98.88% for the UNSW-NB15



dataset. Similarly, the authors in [12] investigated a detection
system that combined autoencoders and LSTM for intrusion
detection. Autoencoders were employed for feature extrac-
tion, and LSTM was utilized for the detection process. The
proposed system achieved a detection accuracy of over 92%
when evaluated on the UNSW-NB15 dataset. In a different
study [13], the authors proposed an intrusion detection system
based on a stacked autoencoder (SAE) and a deep neural
network (DNN). The system’s performance was evaluated
using the NSL-KDD dataset [14], and it achieved high ac-
curacy for multiclass classification tasks. The aforementioned
papers, however, do not address the challenges associated with
imbalanced datasets and the lack of feature explainability in
deep neural networks.

In the paper [15], the authors addressed the issue of in-
terpretability in deep learning-based IDS by employing three
explainable artificial intelligence (XAI) techniques: RuleFit,
SHAP, and local interpretable model-agnostic explanations
(LIME). These techniques were used to provide both local and
global explanations, improving the interpretation of decisions
made by deep learning-based IDS. The proposed method was
validated using the NSL-KDD and UNSW-NBI15 datasets.
Similarly, in [16], the authors proposed an explainable deep
learning-based intrusion detection framework aimed at enhanc-
ing transparency and resilience in deep learning-based IDS
for IoT networks. In their work, the authors employed the
SHAP technique to interpret the decisions made by the deep
learning-based IDS. The proposed framework was evaluated
using the ToN_IoT dataset, achieving high performance in
terms of intrusion detection. However, both of the aforemen-
tioned papers employed XAI techniques without addressing
the issue of imbalanced datasets. This can pose a challenge as
attacks occurring infrequently in the datasets may not be well
explained by the IDS due to the data imbalance.

In [17], the authors utilized a cutting-edge generative model
to generate synthetic data specifically targeting minor at-
tack traffic. They employed a generative adversarial network
(GAN) architecture based on the Wasserstein distance and
combined it with autoencoder-driven deep learning models.
Through comprehensive evaluations, the authors demonstrated
that their proposed scheme outperformed previous Al-based
IDS approaches in terms of performance. Similarly, in [18],
the authors tackled the issue of data imbalance by combining a
conditional Wasserstein generative adversarial network (CW-
GAN) with cost-sensitive stacked autoencoders (CASSAE).
This approach aimed to improve the detection accuracy of
minority and unknown attacks in the NSL-KDD and UNSW-
NB15 datasets. The authors showcased the effectiveness of
their scheme in enhancing detection performance. Both the
aforementioned works utilized the Wasserstein distance-based
GAN, which may not be suitable for handling heterogeneous
data. Additionally, neither of the studies addressed the lack of
explainability in their models, which is an important aspect of
understanding and interpreting the decisions made by IDS.

In contrast to previous studies, our proposed framework
jointly addressed the challenges of data imbalance and explain-
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Fig. 1. Proposed Framework

ability. We achieved this by utilizing CTGANSs to generate au-
thentic synthetic network traffic data, focusing specifically on
generating realistic instances of minor attack traffic. Moreover,
our approach integrated the SHAP mechanism to improve the
transparency and robustness of deep learning-based IDS.

III. PROPOSED FRAMEWORK

The framework we propose, as shown in Fig. 1, comprises
five main stages: 1) Pre-processing, 2) Dataset expansion, 3)
Feature extraction, 4) Training and detection, and 5) Feature
explanation and analysis.

A. Pre-processing

Pre-processing primarily involves two steps: standardization
and one-hot encoding. Standardization is applied to numerical
features which involve scaling using a standardized method.
Categorical or nominal features are subjected to one-hot en-
coding to represent them in a binary vector.

B. Dataset expansion

In general, most of the data flowing through a network is
regular traffic, and instances of malicious activity are quite in-
frequent. Consequently, deep learning-based systems designed
to detect intrusions may encounter difficulties in effectively
understanding the unique features of specific network threats.
To address this issue, we utilized CTGANs [8].

CTGAN is based on Generative Adversarial Networks
(GANs) and aims to model the distribution of tabular data
and generate sample rows from that distribution. It tackles
various challenges by utilizing a conditional generator, which
effectively models both discrete and continuous columns. CT-
GAN introduces innovative features, including mode-specific
normalization during training, where continuous feature values
are represented by a one-hot vector indicating the sampled
mode and a normalized scalar value. The conditional genera-
tor addresses issues caused by imbalanced categories, which
often result in mode collapse in GANs. However, conditional
architectures come with limitations: the input must be properly
prepared for the generator to interpret the conditions, and the
generated rows must adhere to the input conditions.



There are other GAN-based architectures such as WGAN
[19] and WGAN-GP [20] that attains stability in terms of
training. However, they encounter challenges when it comes
to handling mixed data types. In contrast, CTGAN was specif-
ically developed to tackle the difficulties posed by tabular
datasets that contain a combination of numeric and categorical
features. In our study, we utilized CTGAN to generate realistic
synthetic data that mimics network traffic. Our main focus
was specifically on creating instances of minor attack traffic
as shown in Algorithm 1.

Algorithm 1: CTGAN-based Dataset Expansion
Input: Initial IDS Dataset - Dy
Output: Expanded IDS Dataset -D¢
Identify: K minority attack class in Dg

1 Initialize: CTGAN generators, G

2 Initialize: Dy = []; // empty list

3 foreach J € X do

4 | T3 =295(Dg)

5 Dg=Dg+Ty

¢ end

7 De =Dy U @AQ

C. Features extraction

Dealing with a large number of features in intrusion
detection can pose challenges such as increased memory
requirements, higher processing power demands, and large
performance overhead. To address this, Boruta [21], a feature
selection algorithm, can be used which leverages two princi-
ples: Shadow Features and Binomial Distribution.

In Boruta, features are not pitted against each other directly.
Instead, they are compared to their randomized counterparts
known as shadow features. The goal of Boruta is to identify
features that outperform shadow features. If a feature exhibits
greater importance than a predefined threshold, it is considered
a ‘hit’. Every feature is categorized as either a hit or not a
hit, enabling the formation of a binomial distribution from
these outcomes. Although Boruta is a powerful technique for
selecting relevant features, its effectiveness depends on accu-
rately calculating feature importances, which can be influenced
by inadequate data. To overcome this, Boruta SHAP [22],
a feature selection algorithm can be used which combines
Boruta with SHAP Values. By incorporating SHAP values into
Boruta, we gain the ability to obtain comprehensive feature
explanations offered by SHAP, while still benefiting from
the robustness of the Boruta algorithm, ensuring that only
significant variables are retained in the feature set.

D. Training and Detection

After completing the feature selection procedure, we em-
ployed a deep neural network (DNN) to train and detect
patterns. DNNs have demonstrated their effectiveness in iden-
tifying intricate attacks, which is why we opted for this model.
Our framework also allows for the utilization of other forms

of deep learning, such as convolutional neural networks and
autoencoders. Nevertheless, the main focus of this research
paper is to jointly tackle the challenges of data imbalance and
explainability.

E. Feature explanation and analysis

To provide explanations for the features in our intrusion
detection system, we have utilized SHAP [9]. SHAP is a
framework designed to interpret the relevance of features by
assigning importance values specific to each prediction. It
is built upon the mathematical concept of Shapley values
derived from cooperative game theory. Deep SHAP is an
approximation algorithm specifically developed to compute
SHAP values for deep learning models. It capitalizes on the
connection between DeepLIFT [23], and Shapley values. This
connection allows Deep SHAP to efficiently estimate SHAP
values in deep neural networks.

The primary aim of Deep SHAP in our framework is to
interpret the prediction made by our system by determining
the contribution of each feature to that prediction. This entails
assessing the impact of each feature on the overall prediction
generated by our intrusion detection system.

IV. EXPERIMENTS AND RESULTS

In our study, we utilized two widely recognized datasets,
namely NSL-KDD [14] and UNSW-NBI15 [11], which are
commonly employed as benchmark datasets for intrusion de-
tection. The primary motivation behind selecting these datasets
was to facilitate result comparison with other research in the
field.

A. Datasets

The NSL-KDD dataset is extensively used in intrusion de-
tection studies for IoT systems. It comprises 125,973 instances
in the KDDTrain subset and 22,544 instances in the KDDTest
subset. This dataset contains 41 distinct features that represent
various aspects of network flow, alongside a label indicating
whether the instance is categorized as normal or an attack.
The attacks are classified into four main types: DoS, Probing,
remote to local (R2L), and user to root (U2R).

Similarly, the UNSW-NBI15 dataset is another prominent
dataset used in the field of intrusion detection for IoT systems.
The training dataset of UNSW-NBI15 consists of 175,341
observations, while the testing dataset comprises 82,332 ob-
servations. It contains 43 features and two class features that
indicate whether an instance is classified as normal or an
attack. The dataset covers nine primary attack types: Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, and Worms.

B. Implementation

To prepare both the NSL-KDD and UNSW-NB15 datasets
for analysis, we conducted preprocessing tasks, which primar-
ily consisted of standardization and one-hot encoding. These
steps ensured the data was appropriately formatted and ready
for further analysis.
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Fig. 2. ROC curve without dataset expansion and feature extraction for NSL-
KDD

Following preprocessing, we utilized CTGAN to augment
the dataset. In the case of the NSL-KDD dataset, we specifi-
cally expanded the dataset for the less common attack types,
namely R2L and U2R. We introduced an additional 10,000
rows for each of these attack types. Similarly, for the UNSW-
NB15 datasets, we included 5,000 new rows for each of the
minority attack types, which include Analysis, Backdoors,
Shellcode, and Worms.

After enlarging the dataset, we employed Boruta Shap to
select the most important features for both the NSL-KDD
and UNSW-NB15 datasets. For the NSL-KDD dataset, Boruta
Shap feature selection yielded 28 features, excluding class
labels, that were deemed significant. Similarly, for the UNSW-
NB15 dataset, Boruta Shap feature selection identified 19
relevant features.

In our approach, we utilized a deep neural network with a
solitary hidden layer containing 50 neurons as our classifier
models. We specifically focused on the multiclassification task
for both datasets during our evaluation process. To assess the
performance of our intrusion detection models, we employed
various metrics including accuracy, true positive rate (TPR),
false positive rate (FPR) and receiver operating characteristic
(ROC). TPR is the percentage of acutal positives correctly
predicted wherease FPR is the percentage of negative instances
incorrectly classified as positive. ROC is a graphical represen-
tation of the trade-off between the TPR and FPR. The ideal
scenario is when the curve hugs the top-left corner of the
plot, indicating a high TPR and a low FPR. The area under
the ROC curve (AUC-ROC) is often used as a single metric
to summarize the performance of a classifier.

Following the training and classification stages, we em-
ployed SHAP to provide explanations for the predictions made
by our model. Specifically, we utilized DeepSHAP to elucidate
the importance of features in both the NSL-KDD and UNSW-
NB15 datasets.
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Fig. 3. ROC curve after dataset expansion and feature extraction for NSL-
KDD
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Fig. 4. Multiclass classification results on UNSW-NB15 data set

C. Results

Initially, we applied our classifier to the NSL-KDD datasets
without any expansion or feature selection. The resulting
ROC curve is depicted in Fig. 2. Subsequently, we employed
CTGAN to expand the minority class in both datasets and
conducted feature selection using Boruta SHAP. The outcome
of this process is illustrated in Fig. 3. In Fig. 2, it can be
observed that the area under the curve (AUC) for the R2L and
U2R attack classes is relatively low. However, after expanding
the dataset, there is a substantial improvement in the AUC for
R2L and U2R. These findings demonstrate that our proposed
scheme enhances the detection rate for the minority attack
class.

In the same manner, we utilized our proposed methodology
on the UNSW-NB15 dataset. We conducted a comparison of
our results with the study conducted in GCNNAE [17] and
obtained the results depicted in Fig. 4. By analyzing the figure,
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it becomes evident that our approach achieved higher accuracy
for the majority of classes in comparison to GCNNAE [17].
However, we did observe lower accuracy specifically for the
classes Fuzzers and Backdoors. We attribute the reason for
our higher accuracy to the utilization of CTGAN for dataset
expansion and Boruta Shap for feature selection.

1) Feature explanation - NSL-KDD: In our study, we made
use of the SHAP summary plot, which is a visual repre-
sentation demonstrating the overall significance of features
in a model. This plot presents the most important features

at the top and the least important features at the bottom.
In Fig. 5, we displayed a visualization of the top 20 flow
features of NSL-KDD dataset that contribute to the prediction
of different classes such as DoS, Probing, R2L, and U2R.
Observing Fig. 5, it reveals that the feature with the highest
weight in relation to the DoS attacks is ‘dst_host_srv_count’.
This feature represents the number of connections that have
the same port number. An attacker can deplete the available
resources associated with the port by launching a massive
number of connections, resulting in service denial. Thus, this
feature is important for detecting DoS attacks confirming
the result obtained from SHAP. Another closely ranked fea-
ture in terms of weighted SHAP value for DoS attacks is
‘dst_host_same_src_port_rate’. This feature measures the rate
at which connections from the same source port are established
with a particular destination host.

Similarly in Fig. 5, probe attacks show an association with
the ‘dst_host_same_src_port_rate’ in terms of weighted SHAP
values. Classic probe attacks often involve sending multiple
requests from a single source IP address to the target system,
thus confirming the result from SHAP analysis.

In Fig. 5, U2R attacks demonstrate a similar weighted
SHAP value for two features: ‘num_shells’ and ‘root_shells’.
U2R attacks refer to specific types of attacks where an
unauthorized user aims to obtain root-level access to a system.
The feature ‘num_shells’ represents the count of shell prompts
or command-line interfaces open on the system. On the
other hand, the ‘root_shells’ feature pertains to the presence
of a shell with root-level privileges. Both ‘num_shells’ and
‘root_shells’ serve as reliable indicators of privilege escalation
attempts and high weighted SHAP values highlight their
significance in identifying U2R attacks.

Similarly, the features ‘dst_host_same_src_port_rate’, and
‘dst_host_srv_count’ are found to be appropriate for detecting
R2L attacks.

2) Feature explanation - UNSW-NB15: As shown in Fig.
6, in relation to exploits, the two most important features
are ‘ct_state_ttl’ and ‘sttl’. The feature ‘ct_state_ttl’ refers
to the connection state value of time to live (TTL) which
represents the TTL value associated with the connection state
of a network packet. The second important feature, ‘sttl’,
stands for source time to live. In the context of exploits, these
features are crucial as they help in analyzing the behavior
and characteristics of network connections related to potential
exploitation attempts.

In the case of fuzzers, the most important features from Fig.
6 are ‘ct_dst_sport_ltm’, ‘ct_srv_dst’, and ‘ct_srv_src’. The
feature ‘ct_dst_sport_ltm’ refers to the count of the destination
source port being repeated in a short time window. This feature
helps identify instances where the same source port is repeat-
edly used for connections to the destination. Fuzzers often
exhibit this behavior by sending multiple requests from the
same source port in quick succession. ‘ct_srv_dst’ represents
the count of connections made to the same destination service.
Fuzzers may target a particular service repeatedly, leading to
a higher count for this feature. Similarly, ‘ct_srv_src’ denotes



the count of connections originating from the same source
service.

In the case of DoS attacks, the most important features are
identified as ‘ct_state_ttl’,‘synack’, and ‘sload’. The feature
‘ct_state_ttl’ has been determined to be significant in the
context of DoS attacks. Analyzing the TTL values associated
with the connection states helps in identifying potential DoS
attacks, as abnormal or malicious TTL values can indicate
suspicious network behavior. The ‘synack’ feature refers to
the occurrence of SYN-ACK packets in a network connection.
Monitoring the frequency and patterns of SYN-ACK packets
assists in recognizing potential DoS attacks that involve over-
whelming a target system with excessive connection requests.
Additionally, the ‘sload’ represents the server load or load on
the target server can be indicative of a DoS attack.

For reconnaissance activities, two important features are
‘synack’ and ‘ct_srv_dst’. Reconnaissance activities involve
probing different services on a target system to gather in-
formation about potential vulnerabilities or weaknesses. By
analyzing the presence of SYN-ACK packets and monitoring
the count of connections to the same destination service, it
becomes possible to identify reconnaissance activities, thus
confirming the result obtained from SHAP. Similar analysis
can be done for the backdoor, analysis, worms, and shellcode
attacks. Thus, model explainability obtained using SHAP can
be employed by security analysts to enhance their compre-
hension of attacks. Moreover, they can identify flaws in the
model’s logic, allowing them to enhance its effectiveness.

V. CONCLUSION

In this paper, we introduced an improved and interpretable
deep learning approach for intrusion detection in IoT networks.
Our proposed method addresses the challenges of data im-
balance and interpretability commonly encountered in deep
learning-based IDS. To handle the data imbalance issue, we
utilized CTGAN for generating synthetic samples for the
minority class traffic. Additionally, we employed Boruta Shap
for feature extraction, resulting in a reduced number of features
and efficient detection. Furthermore, we incorporated SHAP
for model explainability. We validated the results obtained
from SHAP by conducting an analysis of each attack type in
both the NSL-KDD and UNSW-NB15 datasets. Furthermore,
we conducted a comparative evaluation of our framework
against the previous approach and found that our proposed
framework outperforms the previous framework in terms of
accurately detecting attacks for the majority of classes.
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