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Abstract—ADL abnormality detection has been the focus of
many recent healthcare studies, some of which addressed the
issue by using deep learning techniques. In this paper, we
provide a novel approach for examining ADL sequences to
detect meaningful deviations from the individual’s routine
behavior. This approach can benefit older adults in several
ways, including timely care, early detection of health conditions
to stop them from getting worse, reducing the burden of mon-
itoring on family members, and maximizing self-sufficiency
without interfering with daily activities. We present an Inverse
Reinforcement Learning (IRL)-based method for detecting
behavior abnormalities in older adults through the analysis
of ADL sequences. To do this, we model the problem of
abnormality detection in behavior sequences as a Higher-order
Markov Chain model. Using the IRL method, from observed
trajectories of behavior, we infer the reward function that
drives the individual to perform ADLs. The inferred reward
function will then be utilized to detect potential behavior
abnormalities through a threshold-based mechanism.

1. Introduction

With the world’s aging population, the need for tech-
nologies supporting healthy aging and independent living
for older adults is growing. Aging often brings behavioral
changes that may indicate cognitive decline or other health
issues. Detecting these changes can enable early interven-
tion by caregivers and healthcare professionals, potentially
improving older adults’ health outcomes and quality of life.

Tracking changes in behavior over time using ADLs
data, which includes information about daily activities like
eating, sleeping, and personal hygiene, is valuable. However,
it is challenging to detect behavior changes from ADL data
due to the complexity and variability of human behav-
ior. Advancements in sensor technologies have promoted
the monitoring of ADLs. Decreased ADL performance is
associated with the progression of chronic diseases and
cognitive impairment in older adults [23]. A study com-
paring two groups of older adults found that the activity
maps of dementia patients displayed disorganized behavior
patterns, and there was a notable difference in heterogeneity
between the healthy group and the group with the disease.
[25]. Therefore, the study of life patterns in older persons
can be used to quantify changes relevant to ADLs in the
course of diseases. Although there is plenty of research on
ADL recognition and ADL impairment detection, studying

irregularities in the pattern of daily life has not been studied
enough. The existing research on behavior anomaly detec-
tion in older adults has primarily focused on point anoma-
lies, neglecting the potential of utilizing temporal features
to their fullest extent. While these studies have successfully
identified anomalies where individual data points deviate
from the norm, they have overlooked collective anomalies
that can only be detected by analyzing the sequential nature
of the data. Moreover, some investigations have been limited
to identifying abnormalities within specific activity classes,
failing to account for higher-level analysis of activities.
Thus, it is crucial to consider appropriate behavior gran-
ularity in developing effective anomaly detection methods.
Additionally, it is desirable for the method to offer a gen-
eralizable solution that can be adjusted for different target
users within a reasonable timeframe, enabling it to leverage
pre-learned models and accelerate the learning process.

In this work, we propose an IRL-based model for de-
tecting behavior abnormalities in older adults. The model
infers the reward function from observed expert behavior,
referred to as trajectories. It learns from sequences of ADLs
performed by individuals to capture the underlying motiva-
tions. IRL has shown promise in modeling human behavior
and inferring underlying motivations [13]. By leveraging
Inverse Reinforcement Learning, the model trains the agent
through a semi-supervised task, which is effective when
defining the reward function is complex. Additionally, the
reward function has been demonstrated to exhibit greater
transferability compared to the policy function [20], leading
to the development of more generalizable models. Unlike
supervised methods, the model learns from expert observa-
tions rather than labeled data. It can adapt to changes in
behavior over time and detect early indicators of cognitive
decline or other health issues.

The main contributions of this research are as follows:
(1) A novel representation of the abnormality detection in
ADL sequences as a higher-order Markov Chain model. (2)
A semi-supervised IRL-based model for detecting behavior
changes in older adults from sequences of ADL data. (3) An
evaluation of the proposed model on a real-world dataset of
ADL data from older adults.

2. Related Works

Abnormal behavior can be defined as ”actions that are
unexpected and often evaluated negatively because they
differ from typical or usual behavior” [9]. Because the



concept of an anomaly is difficult to define precisely and
is closely tied to patient behaviors and the types and course
of pathology, artificial intelligence, and more specifically
machine learning techniques, have been used to learn to
recognize those anomalies.

Scholars have used machine learning methods exten-
sively to analyze ADLs with the goal of providing on-time
care and predicting older adults’ health conditions. Many
studies benefit from the availability of datasets for daily
activities, including the use of machine learning methods
for predicting/detecting anomalous behavior [2, 14, 19, 24].

Fahad et al. [10] propose a method for detecting behavior
anomalies by taking into account two types of abnormality:
missing or extra sub-events in an activity and unusual dura-
tions of the activity. They trained an H2O model to classify
events using labeled activities (normal, anomaly). The main
problem with such supervised models is that they must be
trained using labeled data, which is time-consuming and
difficult to generate.

Casagrande et al. [5] have used recurrent neural net-
works to forecast the future values of the activities for each
sensor. When abnormal behavior is anticipated in the near
future, the caregiver is informed using the projected values.
Investigations into data gathering, classification, and predic-
tion were conducted in actual homes with dementia-affected
elderly residents. In assisted living settings, temporal char-
acteristics of ADLs are taken into consideration to forecast
the next activity. Nazerfard [16] presents an association rule
mining module that identifies associations among ADLs
that are grouped according to the start time and duration
of the related ADL. The sequence of the activities is also
taken into account. Cook et al. [8] have developed algo-
rithms for automatically learning separate Markov models
for each of the five classes of activity (Telephone Use, Hand
Washing, Meal Preparation, Eating and Medication Use, and
Cleaning). These models were used to both categorize the
activities that are carried out in smart homes and to identify
errors and inconsistencies in those activities. Krishna et al.
[11], proposed a Long Short-Term Memory (LSTM)-based
method for detecting anomalies in daily activity sequences,
as well as a comparison of the proposed method with
the Hidden Markov Model, which demonstrates comparable
results for the LSTM model. Moallem et al. [15] presented
an anomaly detection method in smart homes based on
deep learning. They used binary sensor data to train a
predictor model, which is a recurrent neural network, to
predict which sensors will turn on/off and how long the
event will last. Arifoglu et al. [3] examined the problem of
dementia-affected older individuals’ activity recognition and
abnormal behavior detection. Given the difficulty in getting
real-world data, the research first proposes an approach
for creating synthetic data that reflects on some behavioral
issues of people with dementia. The second part of the
study looked at Convolutional Neural Networks (CNNs),
which can be used to predict patterns in activity sequences
and identify abnormal behavior associated with dementia.
The identification of activities is regarded as a sequence
labeling issue, and anomalous behavior is highlighted based

on a departure from expected patterns. Additionally, the
effectiveness of CNNs is evaluated in comparison to cutting-
edge techniques like Conditional Random Fields (CRFs),
Hidden Semi-Markov Models, Hidden Markov Models, and
Naive Bayes (NB). The outcomes show that CNNs are in a
competitive position with the listed state-of-the-art methods.

Shang et al. [22], introduced a mechanism for Feature-
based Implicit Irregularity Detection (FIID) that extracts
regularity features through unsupervised learning and pro-
duces the likelihood of implicit irregularity. According to
the proposed FIID, the regular activities that meet the time-
regular and happen-frequently qualities are what define ev-
eryday behaviors as being regular. The implicit irregularity
probability of the daily health state is then calculated using
a multidimensional feature space that is built using these
features. Lago et al. [12] introduced contextualized behavior
patterns, a long-term behavior model that takes context-
related variability into account and then codifies the key
ideas relating to activities in Ambient Assisted Living. this
study shows that using semantic similarity makes it easier
to detect behavioral changes.

While there are plenty of studies on behavior anomaly
detection in older adults, temporal features are not utilized
to their full potential. Most of the studies reflect on point
anomalies which is when an individual data point is different
from the rest of the data. However, collective anomalies that
can only be identified by considering the sequential features
of data are not explored well. Some works are limited to
finding abnormalities within activity classes, while there can
be abnormalities that can only be detected by a higher-
level analysis of activities. Therefore, appropriate behavior
granularity needs to be considered. It is also important for
the method to present a generalizable solution that can be
tuned for different target users in a reasonable time. This
feature would allow the method to start learning the behavior
patterns from a pre-learned model as opposed to learning
from scratch.

To address the above-mentioned issues, we hypothe-
size that deep learning RL-based (Reinforcement Learning)
methods that have been proven effective in analyzing time
series data can also be effectively applied in analyzing ADL
data streams for detecting deviations from normal behavior.
We propose considering temporal features of behavior to
detect collective abnormalities in older adults’ behavior. This
research considers inter-activity dependencies to understand
behavior routines. We also apply state-of-the-art RL-based
methods to minimize the need for labeled data. The sug-
gested method will also address the ”cold start” issue, in
which the algorithm is unable to make any conclusions about
residents for whom it has not yet received sufficient training
data.

3. Background

This section provides an overview of two key concepts
that underpin our proposed approach to behavior abnormal-
ity detection in older adults, i.e., Markov Decision Process



(MDP) and IRL. By fostering a comprehensive comprehen-
sion of these concepts, we can enhance our recognition of
the technical and theoretical underpinnings of our proposed
approach and its potential applications in the realm of smart
home care.

3.1. Markov Decision Process and Reinforcement
Learning

A process can be considered a Markov Decision Process
if the decision to be taken depends only on the current
state of the environment. In other words, regardless of the
previous states, the agent should be able to take the proper
action (make a decision) at any point in time.

RL problems can be formulated as Markov Decision
Processes. An MDP consists of the following basic ele-
ments: a set of states S, a set of actions A, a transition
function T, and a reward function R.

A state represents the situation of the agent within
the environment. In each state, the environment makes a
collection of actions available to the agent (an action space)
from which the agent can choose an action. The agent
interacts with the environment through these actions, and
in response to the agent’s action, the state can change. The
transition function determines the state that the agent will
arrive in after taking an action.

As a part of the interaction between the agent and
the environment, upon the agent’s action, the environment
passes a reward on to the agent using a reward function. The
reward provides feedback to the agent about its performance,
which can positively or negatively reinforce the agent’s
behavior. Guiding the agent through feedback can be done
by providing either an immediate reward (discount factor of
0) or a discounted reward (0 < discount factor < 1).

The ultimate goal of the agent is to take actions that
maximize the accumulated reward over a sequence of ac-
tions. The policy is referred to as a function that determines
what action to take in order to maximize the accumulated
discounted reward given the current state of the environ-
ment.

3.2. Inverse Reinforcement Learning

IRL is a subfield of machine learning that aims to learn
a reward function from expert demonstrations. Unlike tradi-
tional RL, which assumes that the reward function is known
in advance, IRL seeks to infer the reward function from
observed behavior data. This makes IRL particularly useful
in settings where the reward function is not well-defined
or is difficult to specify in advance. Russell [20] made a
suggestion that IRL may be used to provide computational
models of difficult-to-specify behaviors in humans and an-
imals. The goal of IRL is to model an agent’s preferences
based on observed behavior, avoiding the need to manually
specify the reward function. The interaction of the observed
agent with its environment is typically attributed to an MDP,
the solution of which is a policy that maps states to actions.

Since the reward function of this MDP is unknown, it is
presumed that the observed agent adheres to the MDP’s ideal
policy.

Formally, the goal of IRL is to find a reward function
r(s, a) that explains the observed behavior of an agent
in a given environment. The agent’s behavior is typically
represented as a sequence of state-action pairs, denoted as
τ = (s0, a0, s1, a1, ..., sT−1, aT−1, sT ), where st is the state
at time t and at is the action taken by the agent in that
state. The objective of IRL is to find a reward function that
maximizes the likelihood of the observed behavior data:

max
r

P (τ |r) (1)

To solve this optimization problem, IRL algorithms often
employ the Maximum Entropy IRL framework. In this
framework, the reward function is represented as a feature
vector, r, where each element corresponds to a specific
feature influencing the agent’s behavior. A simple repre-
sentation of the reward function is a linear combination of
state-action pair features, given by:

r(s, a) =

n∑
i=1

wiϕi(s, a) (2)

Here, ϕi(s, a) represents the i-th feature, and wi represents
the associated weight. The goal is to learn the weights that
best explain the observed behavior data.

To learn these weights, IRL algorithms, such as the Max-
imum Causal Entropy IRL (MaxEnt IRL) algorithm, utilize
a gradient-based optimization approach. MaxEnt IRL seeks
to minimize the difference between observed behavior data
and the behavior predicted by the learned reward function
while maximizing the policy’s entropy. This results in a
reward function that explains the observed behavior while
exhibiting maximal uncertainty about the agent’s actions.
The algorithm achieves this by maximizing the causal en-
tropy, H[r], which quantifies uncertainty. The probability
of an expert taking action a in state s is modeled using a
Softmax function, given by:

P (a|s) = exp(Q(a, s))∑
exp(Q(a′, s))

(3)

Here, Q(a, s) represents the expected reward (or action-
value) associated with action a in state s. The MaxEnt IRL
algorithm aims to find the reward function r that maximizes
the causal entropy H[r] while being consistent with the
observed expert behavior. The causal entropy H[r] is defined
as:

H[r] = −
∑

(P (a|s) logP (a|s)) (4)

By solving an optimization problem using maximum en-
tropy principles, MaxEnt IRL finds the reward function that
best explains the observed expert behavior while maximiz-
ing the uncertainty about the true reward function. This
allows the algorithm to capture a wide range of possible
reward functions and provide a robust estimate of the un-
derlying rewards in the given environment.



Recent research has also explored the use of deep neural
networks to learn reward functions from expert demon-
strations. Deep Maximum Entropy IRL [26] is a variant
of IRL that uses deep neural networks to model the re-
ward function and policy. Deep Maximum Entropy IRL has
several advantages over traditional IRL approaches. First,
deep neural networks are capable of capturing complex,
non-linear relationships between the state-action pairs and
the reward function. This enables the model to learn more
accurate and robust reward functions that can better explain
the observed behavior data. Second, deep neural networks
can handle high-dimensional input data. The basic idea
behind Deep Maximum Entropy IRL is to use a deep neural
network to model the reward function. The network takes
as input the state-action pairs and outputs the weights of the
different features in the reward function.

IRL has drawn a lot of interest from researchers in
the fields of artificial intelligence and machine learning
[13, 18, 17] because it satisfies two significant needs [4]:
Firstly, it alleviates the need for pre-specifying the reward
function, thereby removing the limitation of RL and optimal
control to problems that can be easily defined with a reward
function. Second, a reward function can be transferred to
another agent and provides a concise representation of an
agent’s preferences. If the subject agent and the other agent
have similar environments and purposes, the learned reward
function can be employed exactly as is; otherwise, it contin-
ues to serve as a valuable foundation even when the agent
specifications are slightly different. In fact, compared to
the observed agent’s policy, the reward function is naturally
more transferrable, as Russell [20] points out.

4. Approach

In this section, we present our approach to detecting
abnormal behavior in older adults using IRL. We input
recent ADLs into the model to understand the older adult’s
behavior patterns and intentions.

As shown in Figure 1, the proposed method works in
three layers: Input, Process, and Output. Sensor data logged
over 2-3 months (baseline period) are processed in the
Offline IRL Module to learn the weights of the feature
vector and reward function r(s, a). Then, the Online IRL
Module receives the real-time behavior sequence of the
resident and calculates its associated reward. Finally, the
Assessment Module compares the calculated reward with a
pre-defined threshold, which represents the average reward
for normal sequences, to determine the normality of the real-
time behavior.

4.1. Behavior Representation

In order for the data to be ready to be processed in
the Behavior Change Detection (BCD) module, we need to
model human indoor behavior for relatively unconstrained
environments.

Considering behavior as a sequence of discrete tokens
(sleeping, eating, watching TV, preparing meals, etc.), two

Figure 1: The IRL-based Behavior Abnormality Detection
Model

important quantities emerge: i) Content: activities that con-
stitute a behavior; and ii) Order: the temporal arrangement
of the constituent activities. The idea of tokenizing behavior
in this work is similar to the way researchers in Natural
Language Processing (NLP) have looked at documents as
vectors of their constituent words (see Vector Space Model,
VSM [21]). Approaches such as VSM capture the content
of a sequence in an efficient way. However, they completely
ignore its order. Behavior is not fully defined by its activ-
ity content alone; rather, by its natural activity orderings.
Therefore, a model to capture activity order in an explicit
manner is needed. For this purpose, we consider a sliding
window of size W over a behavior sequence to take into
account all possible sequences of length W .

In order to feed the behavior sequence into the BCD
module, it needs to have a fixed length. However, behavior
sequences can be of any length as people perform a different
number of ADLs each day. To tackle this issue, we use a
sliding window (with a shift delta of size 1) that allows
for sliding over the dynamic-length sequences and capturing
ADL dependencies. In this approach, although the length of
sequences is fixed to a predefined value (sliding window
length), truncating the sequences does not harm the process
of capturing ADL dependencies as the dependency between
the token at the truncating point and its pre- or post-tokens
will be observed in the previous or next sequences, respec-
tively when the window slides over the original sequence.
The sliding window size is a parameter of the model that
needs to be determined depending on the contextual features
of analysis that the generated data will be used for. For
example, if data are to be used for learning short patterns,
it makes sense to have a small sliding window.

To determine an appropriate value for W , we need to
find a small enough number that, while it limits model com-
plexity, is suitable for covering a representative sequence of
the individual’s patterns of behavior.

We consider the start time of ADLs as the baseline for
the order of tokens in sequences. Therefore, when dealing
with interleaved ADLs, wherein multiple activities are ex-
ecuted concurrently or overlap with each other, with one
activity commencing before another is finished, it becomes



necessary to organize the ADLs in a sequential order based
on their respective start times [1]. In this paper, we model
human behavior B as an ordered sequence of events with
the size W :

B = e1, e2, ..., ei, ..., eW (5)

where ei refers to an event. We define event ei as a tuple
that consists of the activity type ai, duration di, and period-
of-day pi:

ei = (ai, di, pi);where ai ∈ {activity types} and
di ∈ {activity duration range} and
pi ∈ {period of day range}

(6)
Then, we reshape B to a flat tensor B′ in order to feed it
into the algorithm:

B′ = y1, y2, ..., yk, ..., yW ′ ;

where yk = ai if k rem 3 = 0 and

yk = di if k rem 3 = 1 and

yk = pi if k rem 3 = 2

s.t. i = ⌊k + 2

3
⌋

(7)

where W ′ is the window size and equals 3 × W . It is
worth mentioning that activity type and period-of-day are
categorical data that need to be encoded in integers so they
can be fed into the BCD module. For activity duration, we
also discretize the values so the model deals with categorical
values. We believe that, while it does not hurt the accuracy
of the model, it simplifies the model by decreasing the state
space. As the range of duration in different activity types
varies, we first normalize the duration for each activity type,
separately. Then, an equal-width discretization method is
applied to turn the duration values into categorized values.

4.2. Problem Formulation

We represent the Behavior Abnormality Detection prob-
lem as a Higher-order Markov Chain Model. We define the
MDP elements as follows:
State st ∈ STATES: a sliding window of size W that
represents a sequence of the W latest ADL events that the
older adult has performed at time t: et−W , ..., et;
Action at ∈ Actions: the next ADL event et+1;
Transition T (st, at): after taking action at in state
st, the agent transitions to state st+1 that equals
et−W+1, ..., et, et+1, which slides the behavior window one
token forward.

We propose an IRL algorithm that estimates the reward
function r(s, a) from observations. In this model, observa-
tions are trajectories of ADLs that are performed by the
older adult. We use a discount factor γ to consider expected
future rewards in the long-term reward calculation.

We hypothesize that learning the reward function will
enable us to understand unusual ADL sequences. The
threshold-based Assessment Module determines the normal-
ity of the behavior by comparing the associated reward of the

online behavior sequence with a predefined threshold Rth.
In the following blocks, the Offline IRL Module as well as
the online IRL and Assessment Module are presented.

Algorithm 1: Offline IRL
Require: Expert demonstrations τe = (s1, a1, s2, a2, ...) ,

ADL window size W , Episode length epl, Hidden size
hiddens, Learning rate lr, Number of epochs
numepochs

Ensure: Reward function r
1: Define the reward network R using a neural network

with input size W , hidden size hiddens, and output
size equal to the number of activity classes

2: Define the optimizer (Adam) and the loss function
(CrossEntropy) for the reward network

3: Define a custom Gym environment based on the MDP
with parameters (S,A, T, r, γ), where S is the state
space, A is the action space, T is the transition
function, and γ is the discount factor.

4: Train the reward network R using the state-action
pairs in τe and the optimizer and loss function for a
specified number of epochs

5: return r

In algorithm 1, the action space and the observation
space are defined based on the number of activity classes and
the number of previous activities, respectively. The reward
network R is defined using a neural network with input size
W , hidden size hiddens, and output size equal to the num-
ber of activity classes. The optimizer and the loss function
are also defined. The episode length is defined as epl. The
log data is converted to state-action pairs, and the reward
network R is trained using these pairs and the optimizer and
loss function for a specified number of training epochs. The
trained reward function r is returned as the output of the
algorithm.

Algorithm 2: Online IRL and Assessment Module
Require: Real-time ADL Sequence Inputseq, Reward

threshold Rth, Reward function r
Ensure: 0 (No Potential Behavior Change is Detected),

1 (Potential Behavior Change is Detected)

1: Pass the Inputseq to the reward network and get the
output r(Inputseq) (reward value for each activity
class).

2: if r[actual action] <= Rth then
3: Return 1
4: else
5: return 0
6: end if

Algorithm 2 includes an Online IRL Module that re-
ceives a trained reward function R, as well as a real-
time sequence of ADLs and a predefined threshold Rth

to determine the normality of the behavior sequence. The



TABLE 1: Example Data from CASAS-Twor Dataset.
Date Time SensorID SensorState Activity

2009-08-24 00:04:38 M047 ON Sleep begin
2009-08-24 00:04:40 M047 OFF
. . . . .
. . . . .
. . . . .
2009-08-24 00:05:21 M046 ON Sleep end
2009-08-24 00:05:23 M048 ON Wandering in room begin
. . . . .
. . . . .
. . . . .
2009-08-24 00:07:54 P001 576

reward function outputs a reward value for each activity
class. In the Assessment Module, the reward value of the
current activity is compared to Rth to determine whether
the activity conforms to the typical behavior pattern.

5. Results

In the following subsections, we provide the results of
our experiments on a real dataset and present and evaluate
the proposed approach to behavior abnormality detection in
smart homes. The section is divided into two subsections
5.1. Dataset, which provides an overview of the real dataset
used in our experiments, and 5.2. Analysis, that presents
the results of our experiments, including a quantitative eval-
uation of the proposed approach in terms of its ability to
detect potential behavior changes. By presenting a thorough
evaluation of our proposed approach, we aim to provide a
foundation for future research in this area and to inspire new
approaches to improving the quality of care for older adults.

5.1. Dataset

In this subsection, we introduce the public dataset that
we used to evaluate the proposed Behavior Change Detec-
tion method. The CASAS-Twor dataset [7] represents sensor
events collected in the WSU smart apartment testbed during
the 2009-2010 academic year. The apartment housed two
residents, R1 and R2, at this time and they performed their
normal daily activities. A few examples from this dataset are
shown in Table 1. In this dataset, thirteen types of indoor
activities including bathing, bed to toilet transition, eating,
entering and leaving home, housekeeping, meal preparation,
personal hygiene, sleep, sleeping not in bed, wandering
in room, watch TV and work are recorded using motion
sensors, item sensors, door sensors, burner sensors, hot
water sensors, cold water sensors, temperature sensors and
electricity usage. A total of 1,402,405 readings are recorded.
As shown in Table 1, start and end times for each activity
were recorded, making it possible to calculate the duration
of the activity. Also, the time ordering of activities was
captured. Table 2 presents some overall statistics on the
Twor dataset.

Forecasting categorical data time series requires spe-
cialized techniques that can handle the nature of the data.
Markov Chain models are designed to handle categorical
data and can help to forecast the probability of future
states or categories based on the observed patterns in the

TABLE 2: ADL Types in CASAS-Twor Dataset

ADL Type Number of Records
eating 26
enter home 83
housekeeping 55
leave home 147
meal preparation 128
personal hygiene 439
sleep not in bed 4
sleeping 246
wandering in room 14
watchTV 89
Total 1,231

time series data. Markov Chain models are based on the
assumption that the future state of a categorical variable
depends only on the present state, and not on any previous
states. This model can be used to predict the probability of
future state transitions based on the current state.

Higher-order Markov chain models are probabilistic
models that extend the concept of first-order Markov models
by incorporating dependencies on preceding states beyond
the immediate one. This characteristic makes these mod-
els valuable for forecasting categorical time series data,
particularly when the categorical variable is affected by
multiple past states [6]. In contrast to first-order Markov
chain models, which solely consider the present state to
determine the future state of a categorical variable, higher-
order Markov chain models take into account the influence
of multiple previous states. By considering these additional
dependencies, higher-order Markov chain models can yield
more accurate predictions, especially in scenarios where the
categorical variable exhibits intricate patterns and dependen-
cies. Nevertheless, it is important to note that higher-order
models may entail greater computational complexity and
data requirements compared to their first-order counterparts.

5.2. Experimentation and Analysis

In this study, we developed an IRL model to detect be-
havior changes in older adults from ADL data and evaluated
its performance using the CASAS dataset.

We split the CASAS dataset into train and test sets
with a 70-30 ratio. Using the train set, we trained our IRL
model to associate reward values to each action (an instance
of activity classes; i.e., event) in a given state (i.e., ADL
sequence). We then evaluated the model’s performance on
the test set.

Table 3 provides a cross-reference between the activity
labels and their corresponding activity codes. An activ-
ity label represents a combination of an activity and an
encoded time-duration and zone. For example, the code
”4” represents the activity of bathing for a long duration
in the morning, and the code ”18” represents the activity
of transitioning from bed to toilet for a short duration at



midnight. Table 3 serves as a reference to understand the
codes that are used in the following graphs.

Activity Class Label Activity Class Code
Bathing (Long, Morning) 4
Bathing (Medium, Morning) 24
Bathing (Short, Morning) 15
Bed to Toilet Transition (Short, Midnight) 18
Bed to Toilet Transition (Short, Night) 2
Eating (Medium, Night) 21
Eating (Short, Night) 32
Enter Home (Short, Midnight) 33
Enter Home (Short, Morning) 14
Enter Home (Short, Night) 9
Leave Home (Medium, Midnight) 36
Leave Home (Short, Midnight) 19
Leave Home (Short, Morning) 8
Leave Home (Short, Night) 30
Meal Preparation (Medium, Night) 26
Meal Preparation (Short, Midnight) 28
Meal Preparation (Short, Morning) 7
Meal Preparation (Short, Night) 20
Personal Hygiene (Long, Morning) 25
Personal Hygiene (Long, Night) 34
Personal Hygiene (Medium, Midnight) 23
Personal Hygiene (Medium, Morning) 5
Personal Hygiene (Medium, Night) 31
Personal Hygiene (Short, Midnight) 27
Personal Hygiene (Short, Morning) 3
Personal Hygiene (Short, Night) 12
Sleep (Medium, Night) 29
Sleep (Short, Midnight) 17
Sleep (Short, Morning) 11
Sleep (Short, Night) 1
Wandering in Room (Short, Morning) 13
Wandering in Room (Short, Night) 0
Watch TV (Short, Morning) 35
Watch TV (Short, Night) 16
Work (Short, Midnight) 22
Work (Short, Morning) 6
Work (Short, Night) 10

TABLE 3: Activity Class Codes

To provide an overview of the dataset, we first generated
bar charts showing the distribution of train and test data over
various activity classes (Figures 2a and 2b, respectively).
The charts revealed that the dataset is imbalanced, with some
activity classes occurring more frequently than others. Train
and test sets have similar distributions of data across the
various activity classes. This indicates that the test set is
representative of the overall dataset.

We monitored the model’s training progress by tracking
the cross-entropy loss over 1000 epochs of training. Figure
3 shows the line chart of the model’s training loss. As it can
be seen, the model’s loss decreases from 12 to 2.5 indicating
that the model is learning to assign higher rewards to the
next activities that conform to the behavior pattern of the
individual and lower rewards to abnormal activities. This
suggests that the model is able to capture the underlying
patterns in the data. Such a decrease in cross-entropy loss in-
dicates that the model is learning to minimize the difference
between its predicted activity classes and the actual activity

(a) The distribution of activity classes in the Train Set

(b) The distribution of activity classes in the Test Set

Figure 3: Cross-entropy Loss over 1,000 Epochs of Training

classes. Therefore, the trained model will allow us to detect
behavior changes in a person at home more accurately and
efficiently.

Next, we analyzed the model’s performance using a
HeatMap that displays the normalized average reward for
each predicted and actual activity class (Figure 4). The
X-axis represents the predicted activity class by the IRL
model, and the Y-axis represents the actual activity class.
The lighter colors in the HeatMap indicate a higher reward,
while the darker colors indicate a lower reward. Let us take
a closer look at row 22 (Figure 5), which represents the
actual activity ”Work (Short, Midnight).” By examining this
row (referred to as row A), we can gain valuable insights
from the HeatMap.

First, in cell A22, we observe the lightest color on the
HeatMap. This indicates a high reward, suggesting that the
IRL model accurately predicted and matched the actual
activity class. Similarly, cell A10, corresponding to the
activity ”Work (Short, Night),” also displays a light color,
indicating another successful prediction.

However, there are several cells in row A that stand
out with darker colors. For instance, cells A2, A13, A23,
and A35 represent the activities ”Bed to Toilet Transition
(Short, Night),” ”Wandering in Room (Short, Morning),”
”Personal Hygiene (Medium, Midnight),” and ”Watch TV
(Short, Morning),” respectively. The darker colors in these
cells suggest that the model considers these activities less



Figure 4: The average reward for predicted activity classes
in the Train Set

Figure 5: A Sample row from the HeatMap

probable to occur compared to the actual activity ”Work
(Short, Midnight).” We can observe that the Heatmap’s
diagonal cells in the train set have pale colors, indicating
that the trained model assigns high rewards to activity
classes that match the actual activity class. This implies that
the model can accurately identify the majority of activity
classes. Furthermore, we noticed the presence of darker cells
corresponding to each actual activity class, indicating the
model’s ability to identify activity classes that are unlikely
to occur in certain states. This feature is crucial as it enables
us to detect anomalies in the data that may signify behavioral
changes.

However, we also observed that apart from the light cells
in the diagonal, there are other light cells present in the
HeatMap. This is because, in each state, there is more than
one single activity class that is possible to occur due to the
diverse nature of the behavior patterns of an individual. This
suggests that the model may sometimes predict multiple
activity classes in the same state with similar probabilities.

The HeatMap graph clearly shows that certain activities
cannot be substituted with others in a typical situation. For
instance, sleeping for a medium duration at night cannot
be replaced with bed-to-toilet transition, eating, or long
personal hygiene. Additionally, less frequently occurring
activities like wandering in the room are generally associated
with lower average reward values, except when they actually
occur. This is reflected in the graph as the diagonal cells for
such activities remain light, while almost all other cells in

the column are dark.
To ensure that our IRL model was able to generalize

well, we evaluated its performance on a separate test set
that was not used during the training phase. We used the
same HeatMap visualizations to demonstrate the test set
performance, as we did for the training set. Overall, the
evaluation of the IRL model on the test set provides further
evidence of its robustness and effectiveness in accurately
predicting activity patterns and rewards for residents in
smart homes. In Figure 6, depicting the HeatMap for the
test set, we can observe similar trends as the HeatMap for
the training set. The diagonal pattern is evident, suggesting
that the model accurately predicts the majority of activity
classes. Additionally, there are dark cells corresponding to
each actual activity class, indicating the model’s capability
to identify less probable activity classes in certain states.
Furthermore, we can observe the presence of lighter cells
in the HeatMap, implying that the model predicts multiple
activity classes with similar probabilities in some states.

The fact that our IRL model produced similar results for
the test set as for the training set suggests that the model
is not overfitted to the training data and can effectively
generalize to new, unseen data. This is a crucial feature of
the model, as it enables us to apply it to new datasets with
confidence, thereby improving our ability to detect behavior
changes in older adults more accurately and efficiently.

The robustness of our IRL model is particularly im-
portant in the context of homecare, where residents’ be-
havior patterns can vary widely and change over time.
By accurately predicting these patterns and detecting any
changes, our model can help caregivers and researchers to
better understand the needs and preferences of individual
residents, and to develop tailored interventions that improve
their quality of life. Overall, the ability of our IRL model
to effectively generalize to new datasets is a significant
advantage that enhances its practical utility in real-world
care settings.

5.3. Embedding Abnormal Activities

To evaluate the ability of our models to identify behavior
changes, we embedded synthetic abnormal sequences into
the dataset. Based on existing literature, changes in physical
activity levels, alterations in the rest periods between tasks,
changes in sleep patterns, forgetting to complete tasks, and
repeating tasks are all included in the symptom profiles of
diseases such as Alzheimer’s, heart disease, urinary tract
infections, diabetes, and others. We, therefore, embedded
such abnormal sequences into the ADL sequences of the
CASAS dataset. After injecting these abnormalities, we used
the augmented labeled dataset to evaluate the performance
of our Assessment Module in terms of detecting embedded
abnormal activities.

Table 4 presents the performance metrics for the pro-
posed approach, including accuracy, precision, recall, and
F1 score, at different threshold values. The results show
that using lower threshold values increases the number of
false positives, indicating that more normal ADL sequences



Figure 6: The average reward for predicted activity classes
in the Train Set

are incorrectly classified as abnormal. Conversely, higher
threshold values result in a decrease in recall, indicating
that the model is more likely to miss abnormal cases.
We used a threshold value that balances the precision and
recall. To support this decision, we also report the F1 score,
which is the harmonic mean of precision and recall. This
score provides a single metric that combines both precision
and recall, making it useful for selecting an appropriate
threshold.

The evaluation of the augmented dataset demonstrated
the effectiveness of our approach in identifying behavior
changes associated with different diseases. By accurately
detecting these changes, our approach has the potential to
enhance the quality of care provided to residents in smart
homes.

Threshold Accuracy Recall Precision F1-Score
0.6 0.73 0.87 0.65 0.744
0.75 0.74 0.84 0.66 0.739
0.85 0.73 0.81 0.72 0.762
0.9 0.74 0.76 0.73 0.744

TABLE 4: Evaluation metrics for different thresholds.

In order to compare the performance of our proposed
approach with the most powerful sequential models, Table 5
presents the results of the comparison between the proposed
approach and the LSTM model for detecting abnormal
behavior sequences. The proposed approach achieved an
accuracy of 73%, outperforming the LSTM model, which
achieved an accuracy of 69%. This indicates that the pro-
posed approach is more effective in accurately identifying
abnormal behavior patterns in the given dataset. Moreover,
the proposed approach also demonstrated higher precision

(72% vs. 71%), recall (81% vs. 77%), and F1-score (76.2%
vs. 73.8%) compared to the LSTM model. These results
suggest that the proposed approach yields better overall
performance in terms of both precision and recall, striking
a balance between correctly identifying abnormal behavior
instances and minimizing false positives. Thus, the proposed
approach shows promise as an advanced method for detect-
ing abnormal behavior sequences in the context of smart
home environments.

TABLE 5: Comparison of Abnormal Behavior Detection
Approaches

Approach Accuracy Recall Precision F1-Score
Proposed Approach 73 81 72 76.2

LSTM Model 69 77 71 73.8

Overall, the results demonstrate that our IRL model
is able to detect behavior changes in older adults from
sequences of ADL data with a high degree of accuracy. The
model is able to identify activity classes that are unlikely to
occur in some states, which can help healthcare profession-
als detect anomalies and potential behavior changes.

6. Conclusion

This research utilizes state-of-the-art IRL algorithms
to address the problem of behavior abnormality detection
in smart home settings. The proposed model introduces a
novel representation of an individual’s recorded ADLs as a
higher-order MDP. An offline IRL algorithm is then used
to infer the underlying reward function of the individual,
followed by an online IRL algorithm in collaboration with
the Assessment Module to determine the abnormality of the
observed behavior.

We evaluated the effectiveness of the proposed approach
using an augmented real dataset, and the results showed that
the model is capable of detecting potential behavior changes
with an F1 score of %76.2. This demonstrates the model’s
ability to accurately identify abnormal behavior patterns in
smart home residents, providing caregivers and researchers
with a valuable tool for improving the quality of care and
developing tailored interventions.

While the proposed model represents a significant ad-
vancement in the field of behavior abnormality detection,
there are also some limitations that should be noted. One
limitation is the increase in state space size with longer ADL
sequences, posing challenges in effective model training.

As the length of ADL sequences grows, the MDP’s
state space exponentially expands, necessitating more data
to cover it adequately. This is particularly challenging when
working with limited or sparse datasets.

Nevertheless, our proposed model shows promise for
behavior abnormality detection in smart home settings. By
combining IRL algorithms and machine learning techniques,
we can gain insights into resident behavior patterns and
develop effective interventions to enhance their quality of
life.
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[12] P. Lago, C. Jiménez-Guarı́n, and C. Roncancio. Con-
textualized behavior patterns for change reasoning in
ambient assisted living: A formal model. Expert Sys-
tems, 34(2):e12163, 2017.

[13] B. Lin and D. J. Cook. Analyzing sensor-based in-
dividual and population behavior patterns via inverse
reinforcement learning. Sensors, 20(18):5207, 2020.

[14] A. Lotfi, C. Langensiepen, S. M. Mahmoud, and M. J.
Akhlaghinia. Smart homes for the elderly dementia
sufferers: identification and prediction of abnormal
behaviour. Journal of ambient intelligence and hu-
manized computing, 3(3):205–218, 2012.

[15] M. Moallem, H. Hassanpour, and A. Pouyan. Anomaly
detection in smart homes using deep learning. Iranian
(Iranica) Journal of Energy & Environment, 10(2):
126–135, 2019.

[16] E. Nazerfard. Temporal features and relations discov-
ery of activities from sensor data. Journal of Ambient
Intelligence and Humanized Computing, pages 1–16,
2018.

[17] M.-h. Oh and G. Iyengar. Sequential anomaly detection
using inverse reinforcement learning. In Proceedings
of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & data mining, pages 1480–
1490, 2019.

[18] N. Rhinehart and K. M. Kitani. First-person activity
forecasting with online inverse reinforcement learning.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 3696–3705, 2017.

[19] D. Riboni, C. Bettini, G. Civitarese, Z. H. Janjua,
and R. Helaoui. Fine-grained recognition of abnor-
mal behaviors for early detection of mild cognitive
impairment. In 2015 IEEE International Conference on
Pervasive Computing and Communications (PerCom),
pages 149–154. IEEE, 2015.

[20] S. Russell. Learning agents for uncertain environments.
In Proceedings of the eleventh annual conference on
Computational learning theory, pages 101–103, 1998.

[21] G. Salton, A. Wong, and C.-S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620, 1975.

[22] C. Shang, C.-Y. Chang, J. Liu, S. Zhao, and D. S.
Roy. Fiid: feature-based implicit irregularity detection
using unsupervised learning from iot data for homecare
of elderly. IEEE Internet of Things Journal, 7(11):
10884–10896, 2020.

[23] M. G. Stineman, D. Xie, Q. Pan, J. E. Kurichi, D. Sal-
iba, and J. Streim. Activity of daily living staging,
chronic health conditions, and perceived lack of home
accessibility features for elderly people living in the
community. Journal of the American Geriatrics Soci-
ety, 59(3):454–462, 2011.

[24] N. K. Suryadevara, S. C. Mukhopadhyay, R. Wang,
and R. Rayudu. Forecasting the behavior of an elderly
using wireless sensors data in a smart home. Engi-
neering Applications of Artificial Intelligence, 26(10):
2641–2652, 2013.

[25] P. Urwyler, R. Stucki, L. Rampa, R. Müri, U. P.
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