
BEHAVIOR-DRIVEN DESIGN PATTERN RECOVERY

Kamran Sartipi and Lei Hu
Department or Computing and Software, McMaster University

Hamilton, ON, Canada
email:{sartipi, hul4}@mcmaster.ca

ABSTRACT
In this paper, we present an approach for enhancing
program understanding and reusability through a behavior-
driven design pattern recovery process. In this context,
incorporating behavioral features would characterize the
approach as a goal-driven and scalable pattern recovery
process. The proposed technique consists of a feature-
oriented dynamic analysis and a two-phase design pattern
detection process. The dynamic analysis operates on the
system’s scenario-driven execution traces and produces
a mapping between features and their implementation at
class level. For the two-phase design pattern detection,
we employ approximate matching and structural matching
algorithms to identify the instances of the target design
pattern that is described using our proposed Pattern De-
scription Language (PDL). The correspondence between
system features and identified design pattern instances
can facilitate the construction of more reusable and
configurable software components to be maintained. We
have implemented an Eclipse plug-in toolkit and have
conducted experimentation on three versions of JHotDraw
systems to evaluate our approach.

KEY WORDS
Dynamic Analysis; Behavior Feature; Design Pattern De-
tection; Feature-specific Scenario; Pattern Matching.

1 Introduction

Industrial software products in specific application do-
mains are usually developed according to a reference archi-
tecture which consists of core parts and variable parts that
are meant to satisfy the evolving requirements of the new
products. Design patterns represent common solutions to
design problems that allow reusability of design and con-
tribute in reducing the system’s complexity [11]. More-
over, the knowledge about design patterns within a soft-
ware system can help the comprehension of the applied de-
sign decisions and adopted solutions made by the software
designer. As a result, the recovery of design patterns is a
crucial research problem that has gained lots of attention
within software engineering community.

In this paper, we propose an approach based on a hy-
brid dynamic and static analysis to address the problem of
reusing existing system’s design that correspond to specific
software behavior as the goal of the recovery process. Con-

sequently, these patterns can be used in developing a fam-
ily of similar systems that share the same core features,
through: i) a dynamic analysis that allows us to restrict
the analysis to the source code that implement specif fea-
tures; and ii) a static analysis that identifies the instances of
a design pattern that are specified using a proprietary pat-
tern description language. A repository of different design
pattern specifications allows us to identify the instances of
different design patterns within the selected feature.

In this approach, the recovered patterns are not re-
stricted only to the design patterns introduced by Gamma
et al. [11], but they can be defined by the users. During
the dynamic analysis, we identify a group of key features
of the subject system and generate a set of relevant task
scenarios for each feature, namely feature-specific scenario
set. Through scenario execution, pattern mining, and con-
cept lattice analysis we obtain the classes that contribute
in generating those features, without any prior knowledge
about the system. The obtained classes will form a search
space to conduct the pattern detection process, where the
design patterns are specified using a new pattern descrip-
tion language (PDL) that drives the pattern matching pro-
cess. A pattern repository holds the specification of a num-
ber of design patterns. The pattern matching process recov-
ers the instances of the design patterns in the repository in
two phases: i) an approximate matching process generates
a list of potential pattern instances for each target pattern,
by comparing the number of class attributes in the search
space; and ii) a structural matching compares the complete
class structure of the target pattern against the structureof
the candidate instance pattern.

Figure 1 illustrates the proposed framework for
behavior-driven design pattern detection. The framework
consists of two parts:feature-oriented dynamic analysis
andtwo-phase design pattern detection processwhich are
described in the following sections.

2 Feature-oriented dynamic analysis

In this section, we locate the implementation of specific
software features within the source code by the means of
scenario execution, sequential pattern mining, and concept
lattice analysis. In summary, the steps include: feature-
specific scenario set selection and execution on the in-
strumented software system; extracting execution patterns
from the execution traces; applying concept lattice analysis

Figure 1. The proposed framework for behavior-driven design pattern detection.

on the execution patterns to assign classes to features and
generate search space. In the remaining of this section the
above steps are described in more detail.

2.1 Execution pattern extraction

Scenario selection
According to the knowledge about the application domain,
available documents, and user’s guide of the subject
system, we generate a set of relevant task scenarios each
of which contains a specific software feature. We call
this set of scenarios asfeature-specific scenario set. As
an example, for the feature ”move” of the drawing tool
JHotdraw5.1, we generate the following scenarios that
all share the operation ”move” to move a figure; these 5
scenarios constitute a feature-specific scenario set. Note
that operations ”start” and “exit” are not specific features,
as they are repeated in almost all scenarios.

1 start, drawarectangle, move, exit

2 start, drawaellipse, move, exit

3 start, drawapolygon, move, exit

4 start, drawaline, move, exit

5 start, insertaimage, move, exit

Execution trace generation
In this step, we use Eclipse Test and Performance Tools
Platform (TPTP) [2] to instrument and collect execution
information from the software system. TPTP is an open
platform which provides the services such as application
monitoring, tracing and profiling. By running scenarios
of the feature-specific scenario set on the instrumented

software system, we obtain the execution traces of each
scenario in the form of entry/exit listings of object invoca-
tions. We can enable the Filter Model option of the TPTP
in order to eliminate the library class traces from the large
traces of a scenario execution. Through setting the Filter
in TPTP we can choose class names that we are interested
to be profiled. We can also discard system libraries,
e.g., Java system classes. Moreover, the preprocessing
operation is applied on the execution traces to eliminate
all the redundant object invocations caused by the cy-
cles of the program loops. The trimmed execution traces
are then fed into the next step, execution pattern generation.

Execution pattern generation
Finally, by applying a sequential pattern mining algorithm
on the execution traces of the specified feature, we can ob-
tain the execution patterns of the feature. Here we use a
modified version of the sequential pattern mining algorithm
by Agrawal [4]. In our implementation, anexecution pat-
tern is defined as a contiguous sub-trace of an execution
trace that exists in a number of execution traces. This strat-
egy generates the meaningful execution patterns, each of
which consists of a set of core classes that implement the
specific feature of the subject system.

2.2 Execution pattern analysis

After we obtain the execution patterns of the specified fea-
ture, we use concept lattice analysis to cluster the group
of classes in the execution patterns that exclusively corre-
spond to the specified feature of a scenario set. A similar
technique allows us to cluster the group of classes in pat-

terns that are common to every scenario set. In our setting
for the concept lattice analysis, anobjectis a targeted fea-
tureφi which is shared within the feature-specific scenario
setSφ, and anattribute is a classc that participates in the
execution patterns withinSφ. In this context, the cluster
of common classes appear at the upper region of the lat-
tice, and clusters of feature-specific classes are located at
the nodes in the lower region of the lattice. Thus, a map-
ping between a software feature and its implementation is
obtained. The obtained classes are considered as the search
space for the two-phase design pattern detection process
which is discussed in the following section.

3 Two-phase design pattern detection

Design patterns represent high level concepts in object ori-
ented methodology. Therefore, by identifying their occur-
rences in the implementation of a software feature, we are
able to reveal some design aspects of that feature. Never-
theless, pattern detection is not a trivial task since we need
to find all the possible pattern instances whose structures
are consistent with the target pattern. Therefore, pattern
detection is a complex and time-consuming operation that
can easily result in combinatorial explosion [13]. To avoid
this inherent complexity in pattern detection process, we
first decompose the search space (i.e., the set of all classes
in the subject system) into a group of smaller clusters of
classes around each classc of the search space, where class
c would become themain-seed classof a candidate instance
pattern (i.e., the cluster of classes around main-seed class).
Second, we perform two pattern matching algorithms (i.e.,
approximate matching and structural matching) to obtain
all the pattern instances in the search space that match with
the target pattern.

3.1 Pattern detection

The pattern detection consists of a two-step matching
process, as:approximate matchingto generate a ranked
list of eligible candidate instance patterns; andstructural
matching to identify the structurally matched instance
patterns within the ranked list of instances.

Approximate matching
A critical parameter in pattern detection process is the size
of the search space for large software systems. A brute
force approach to identify all the pattern instances in a sys-
tem with a large number of classes will result in a combi-
nation explosion due to multiple roles that classes can play
in the pattern. In approximate matching, the main goal is
to reduce the search space to a number of instance patterns
that are sufficiently close to the target pattern. In this con-
text, we specify a set of attributes for the main-seed of the
patterns (both target pattern and instance patterns) whose
values are used to compare these two patterns. Hence, we
can rank eligible instance patterns in the search space and

A b s t r a c t i o n

+ O p e r a t i o n ()

I m p l e m e n t o r

+ O p e r a t i o n I m p ()

R e f i n e d A b s t r a c t i o n

+ O p e r a t i o n ()

C o n c r e t e I m p l e m e n t o r A

+ O p e r a t i o n I m p ()

C o n c r e t e I m p l e m e n t o r B

+ O p e r a t i o n I m p ()

I m p l e m e n t o r . O p e r a t i o n I m p ()

1 Begin-PDL
2 Pattern: ”Bridge”

3 Main-seed class: ”Implementor”

4 Depth 1 :

5 Inherited by :

6 ”ConcreteImplementorA”;

7 ”ConcreteImplementorB”

8 in Association :

9 ”Abstraction”

10 in Delegation :

11 ”Abstraction”

12 Depth2 :

13 Seed-Depth2 : ”Abstraction”

14 Inherited by :

15 ”RefinedAbstraction”

16 End-Pattern
17 End-PDL

Figure 2. Class diagram and PDL description of Bridge
design pattern.

generate a short list of approximately similar instance pat-
terns to the target pattern. Themain-seed attributesare as
follows:

• number ofInherit From relations

• number ofInheritedBy relations

• number ofAssociationrelations

• number ofAbstractrelation (0 or 1)

Figure 2 illustrates the class diagram and PDL spec-
ification of theBridge design pattern which consists of a
main-seed class and twoDepthsclasses around the main-
seed class. The rational for such two-depth design pattern
specification is as follows. We observed that for all the GoF
design patterns presented in [11], there exist one or more
classes which can reach any other class in the pattern within
a shortest path of 2 edges. We name this set of classes as
potential main-seed classes. During the structural match-
ing phase, one of these classes is selected as the main-seed
according to the largest number of class-relationship that
a candidate main-seed possess within the pattern (namely
degree of class). Using the same approach the candidate
main-seeds within a search space (i.e., class cluster) are
determined. In Figure 2 lines 4 to 11 describe the struc-
tural relations between main-seed class and other classes in

depth1, while lines 12 to 15 indicate the structural infor-
mation betweenSeed-Depth1 classes and depth2 classes
in the pattern.

Considering a search space as a set of classes
SP = {c1, c2, ..., cn}, for each classci ∈ SP we define
an attribute vectorAttr(ci) = [a1, ..., ak] with cardinality
k. Given the main-seedsct of the target pattern andci of
the instance pattern, the approximate similarity function
simapx is defined as:

simapx(Attr(ci), Attr(ct)) =

{

∆(Attr(ci), Attr(ct)) Attr(ci) ≥ Attr(ct)
0 Else

∆(Attr(ci), Attr(ct)) =

1 −
Pk

j=1
(Attrj(ci)−Attrj(ct))
P

k
j=1

Attrj(ci)

whereAttr(ci) ≥ Attr(ct) means that the value of
each element in the attribute vectorAttr(ci) is greater than
or equal to that of attribute vectorAttr(ct). In this con-
text, functionsimapx computes the approximate similarity
value between the target pattern (represented by the main-
seed classct) and the candidate instance pattern (repre-
sented by main-seed classci).

Algorithm 1 ”ApproximateMatching” below receives
the search space, class relations, target pattern, and a cut-
off threshold similarity value, and returns the list of eli-
gible candidate instance patterns. The algorithm utilizes
the function ”ComputeAttrV alue()” to compute the at-
tribute values of a main-seed using the class relation ma-
trices; and function ”GeneratePattern()” to compose an
instance pattern with two level classes using a classci from
the search space.

Algorithm 1 : ApproximateMatching
Input :
SP : search space (set of classes obtained from feature
analysis)
M : inter-class relations matrices
t: target pattern from pattern repository
tsh: cut-off threshold similarity value
Local Variable:
Attr(ci): vector attribute ofci

Attr(ct): vector attribute ofct

pi: a candidate instance pattern
Result:
LE: list of eligible instance patterns
begin

LE := ∅ ;
ct := GetMainSeedClass(t);
Attr(ct) := ComputeAttrV alue(t) ;
for classci ∈ SP do

Attr(ci) := ComputeAttrV alue(ci, M) ;
if simapx(Attr(ct), Attr(ci)) ≥ tshthen

pi := GeneratePattern(ci);
LE := Add(LE, pi);

end

Structural matching
Structural matching algorithm (presented as Algorithm 2)
deals with the identification of all the instances of the tar-
get pattern within a candidate instance pattern1 obtained
from the aforementioned approximate matching. The al-
gorithm receives a candidate instance pattern, target pat-
tern, and the class relations. It returns one or more identi-
fied instance patterns within the candidate instance pattern.
The algorithm utilizes the functionsGetDepth1Classes()
and GetDept2Classes() to retrieve the corresponding
depth1 and depth2 classes from the PDL representation
of the target pattern. FunctionDepth1Matching() and
Depth2Matching() are discussed below in more details:

Algorithm 2 : StructuralMatching
Input :
pi: a candidate instance pattern
t: target pattern from pattern repository
M : inter-class relations matrices
Local Variable:
D1t: set of classes in depth1 of target pattern
D1mch: set of combinations of depth1 matched classes
D2t: set of classes in depth2 of target pattern
Cj : a combination of depth1 classes
Result:
R: set of identified instance patterns
begin

R := ∅ ;
D1t := GetDepth1Classes(t);
D2t := GetDepth2Classes(t);
D1mch := Depth1Matching(t, D1t, pi, M);
for Cj ∈ D1mch do

R :=
R ∪ Depth2Matching(Cj , D2t, pi, M);

end

• Depth1Matching(): using candidate instance pat-
ternpi and relation matricesM , all the depth1 classes ofpi

are obtained. Through listing all the combinations of these
depth1 classes, we obtain the instances of the target pattern
in depth1. Here we exclude those instances where one class
holds two roles in one pattern.

• Depth2Matching(): for each combination of
depth1 classes (obtained above) we identify the depth2
classes of the candidate instance pattern according to the
inter-class relationM . The comparison of the combination
of depth1 and depth2 of thepi with those of target pattern
t results in the matched instance pattern for target pattern.

After a pattern instance is detected, a further man-
ual verification has to be performed to check whether the
pattern is really implemented within the subject system
through browsing the source code and comparing with the
result of other similar pattern detection tools [18].

Figure 3. Concept lattice representation of the features and
classes. Each bubble represents a feature and the shaded la-
bels represent classes. Specific classes and common classes
are clustered at the lower region and upper region, respec-
tively.

4 Case study
In this section, we discuss the results of applying the pro-
posed approach on a Java open-source project,JHotDraw
[1]. JHotDraw is a Java GUI framework which is used to
draw two-dimensional graphics and it contains many in-
stances of design patterns in its implementation. Moreover,
the designers of JHotDraw provide the usage descriptions
of the design patterns in the software documentation, which
allow us to evaluate the results of our approach. Based on
discussions in the earlier sections, we apply our proposed
approach on three versions of JHotDraw, ver5.1, ver6.0b1
and ver7.0.7 to extract reusable software artifacts.

H a n d l e T r a c k e r

- f A n c h o r H a n d l e : H a n d l e

+ m o u s e D r a g ()

H a n d l e

+ i n v o k e S t e p ()

P o l y g o n S c a l e H a n d l e

+ i n v o k e S t e p ()

P o l y g o n H a n d l e

+ i n v o k e S t e p ()

Figure 4. A Strategy pattern instance of feature Drawing
Polygon in JHotDraw 5.1.

The experiments are performed on a Windows XP
professional edition running on a PC with a 1.5GHZ cen-
trino processor, 512M bytes memory and 1G bytes virtual
memory. The case study has been performed in accor-

1Note that a target pattern usually has fewer classes than thecandi-
date instance pattern, hence it may match with more than one sub-pattern
instances within the candidate pattern.

A b s t r a c t T o o l

+ m o u s e M o v e ()

P o l y g o n T o o l

- f P o l y g o n : P o l y g o n F i g u r e

+ m o u s e M o v e ()

P o l y g o n F i g u r e

+ s e t P o i n t A t ()

+ p o i n t C o u n t ()

m o u s e M o v e () {

 f P o l y g o n . s e t P o i n t A t (. . .)

}

Figure 5. Adapter design pattern instances of feature Draw-
ing Polygon in JHotDraw 5.1, 6.0b1 (for 7.0.7 is slightly
different, it is not shown for space consideration).

dance with the proposed framework and includes the fol-
lowing major steps: selecting features, generating feature-
specific scenario sets, sequential pattern mining, concept
lattice analysis, and pattern matching.

Table 1 depicts the experimental results of execution
trace extraction and execution pattern mining for 10 fea-
tures of the three versions of JHotDraw systems. In a fur-
ther step, we supply the resulting execution patterns ob-
tained from the sequential pattern mining to a concept lat-
tice generation tool, ConExp [3]. The resulting concept
lattice is shown in Figure 3 where the feature-specific con-
cepts are gathered at the lower part of the lattice. Finally,
we generate a search space by collecting all classes of
the feature-specific concepts and augmenting this space by
adding two levels of immediately related classes.

In the following phase of the experimental study, we
apply pattern detection algorithms ”ApproximateMatch-
ing()” and ”StructuralMatching()” (discussed in Section 3)
on the search space to detect all the pattern instances of
the target patterns in the pattern repository. Currently, our
pattern repository contains the following patterns:Adapter,
Proxy, Observer, Decorator, BridgeandStrategy & State.
We describe structural information of each pattern using
the proposed pattern definition language (PDL) and store it
into the pattern repository. Figure 2 illustrates the structural
information of Bridge design pattern in PDL. To filter out
the false-positive patterns in the detected pattern instances,
we perform a manual verification on these resulting pattern
instances by inspecting the corresponding source code. To
correlate a detected pattern instance to a software feature,
we check the overlap between the highly related classes of
the feature (obtained from concept lattice) with the partici-
pating classes of the pattern instance. If there is an overlap,
it means that there exists a relation between the feature and
the pattern instance. Figure 4 shows an instance of Strategy
design pattern that is detected from JHotDraw 5.1. This
pattern instance is related with the featureDrawing Poly-
gon since classPolygonHandleand PolygonScaleHandle
are highly related classes of this feature.

The results obtained from the two-phase pattern de-
tection process can support the task of migrating an exist-
ing family of software systems into a software product line.
For example, Figure 5 presents the detected Adapter design
pattern instances of featureDrawing Polygonin JHotDraw
5.1 and 6.0b1 (for space consideration the result for 7.0.7

Specific Feature Number of Average Average Pruned Number of Average
of JHotDraw Scenarios Trace Size Trace Size Extracted Patterns Pattern Size

Rectangle 4 / 4 / 4 2494 / 4889 / 11962 927 / 2165 / 2110 13 / 24 / 23 126 / 170 / 220
Round Rectangle 4 / 4 / 4 2369 / 5040 / 10620 927 / 2327 / 1864 15 / 25 / 19 153 / 138 / 183
Ellipse 4 / 4 / 4 2104 / 5492 / 10580 773 / 2226 / 1915 15 / 22 / 24 112 / 185 / 175
Polygon 4 / 4 / 4 4553 / 15769 / 17130 1654 / 4029 / 3142 21 / 41 / 38 199 / 192 / 130
Line 4 / 4 / 4 1439 / 4253 / 9882 546 / 2224 / 2123 7 / 24 / 27 157 / 170 / 126
Move 4 / 4 / 4 2599 / 4930 / 11341 774 / 2688 / 2487 18 / 34 / 52 31 / 89 / 37
Delete 4 / 4 / 4 1323 / 5739 / 8540 623 / 2456 / 969 16 / 32 / 24 36 / 89 / 49
Group 5 / 5 / 5 4579 / 12978 / 33921 1397 / 4675 / 4842 36 / 66 / 57 26 / 85 / 49
LineConnection 4 / 4 / 4 5238 / 10356 / 24075 1681 / 4158 / 4437 38 / 53 / 56 36 / 78 / 73
Text 4 / 4 / 4 1524 / 6074 / 18629 781 / 2435 / 2204 11 / 35 / 12 62 / 105 / 288

Legend: A / B / C A: data for JHotDraw 5.1 B: data for JHotDraw 6.0b1 C: data for JHotDraw 7.0.7

Table 1. Results of execution trace extraction and execution pattern mining for 10 features of three versions of JHotDraw
systems.

Design Pattern Category of Coarse Fine Pattern Description Supporting User Feature
Detection Techniques Techniques Matching Matching Language -Defined Pattern -Oriented
DP-Miner [8] matix-based NA NA NA NA NA
PINOT [17] structure-based NA Yes NA NA NA
Balanyi [7] structure-based Yes Yes DPML Yes NA
Nikolaos [18] matix-based NA Yes NA NA NA
Lucia [15] structure-based Yes Yes VL Yes NA
Antonial [6] metric-based Yes NA AOL NA NA
Yann-Gael [13] metric-based Yes Yes NA NA NA
DPVK [19] structure-based Yes NA RSF & REQL NA NA
PAT [14] structure-based Yes NA PROLOG NA NA
Our technique structure-based Yes Yes PDL Yes Yes

Table 2. Comparison of several design pattern detection techniques

is not shown). By comparing and analyzing the detected
pattern instances of the three versions JHotDraw systems,
we notice that the implementation of the featureDrawing
Polygonin JHotDraw 5.1 and 6.0b1 is very similar, while
there exist some differences between the implementation
in JHotDraw 7.0.7 with that in JHotDraw 5.1 and 6.0b1.
Performing such comparison and analysis on the detected
pattern instances of these 10 features, which are used most
frequently in the applications and shared by all the three
versions of JHotDraw systems, can help to comprehend the
features’ implementation at the design level and allows for
a quick understanding of evolution of the features within
the software.

5 Related work
In this section, we discuss relevant approaches in dynamic
analysis and design pattern detection to our work.

In dynamic analysis of software systems, El-Ramly
et al. [10] applied a sequential pattern mining technique
to identify interaction patterns between graphical user
interface components. Zaidman et al. [20] applied a
web-mining technique on program dynamic call graphs,
where nodes represent classes and edges represent method
invocation. Eisenbarth et al. [9] proposed a formal
concept lattice analysis to locate computational units that
implement a certain feature of the software system. In

contrast to the above techniques, our approach exploits
a novel analysis technique to handle large sizes of the
execution traces, and allows an intuitive and promising
process of feature to component allocation. We classify
approaches to design pattern recovery (focus of this paper)
into two major categories, as follows.

Structure-based pattern detection.
In this category, the detection process identifies pattern
instances that have the same pattern class structure as a
target pattern. Nija Shi et al. [17] propose an approach
to discover the GoF patterns from Java source code based
on data-flow analysis on abstract syntax tree in terms
of basic blocks. Lucia et al. [15] propose a two-phase
approach to recover structural design patterns, where in the
first phase the number of candidate patterns are reduced
through analysis of class diagram structure, and in the sec-
ond phase the real patterns are identified by user inspection.

Matrix-based pattern detection.
In this category, the approaches store the inter-class rela-
tions in the software system as well as the target design
patterns into different matrices. Thus, the pattern matching
process is accomplished by matrix matching. Nikolaos et
al. [18] present an automatic approach which uses a simi-
larity score algorithm to detect design patterns. The design

pattern detection is accomplished by calculating the sim-
ilarity score between the matrices of system and those of
target design patterns.

Several other approaches on design pattern detection
have also experimented with JHotDraw system [5, 8, 13,
15, 17, 18]. We compared the results obtained by these ap-
proaches including our approach which indicates some dif-
ferences in aspects such as: description, completeness, and
variations of design patterns. In Table 2 we compare our
technique with several current major design pattern detec-
tion techniques based on different criteria such as: type of
detection algorithm (coarse or approximate matching ver-
sus fine or detailed matching); kind of pattern description
language; supporting user defined patterns; and using soft-
ware features in pattern detection process.

6 Conclusions

In this paper, we presented a two-phase approach to iden-
tify individual design patterns within a subject software
system as a means to assist the construction of a reference
architecture for a family of software systems, or for differ-
ent versions of the same system. The main advantage of our
approach over the existing approaches is incorporating dy-
namic analysis and feature localization in source code. This
allows us to perform a goal-driven design pattern detection
and focus ourselves on design patterns that implement spe-
cific software functionality as opposed to conducting a gen-
eral pattern detection which is susceptible to high complex-
ity problem. We applied our technique on three versions of
a software system as members of a software family. In this
context, the common design patterns that implement spe-
cific software features are candidates to construct a com-
mon reference architecture for the product line. The major
parts of the proposed approach are summarized as follows.
The first phase (behavior feature analysis) consists of fea-
ture and scenario identification, execution pattern mining,
and concept lattice analysis to extract both feature specific
and common groups of classes that implement features of
the system. This phase concludes by producing a search
space for the matching process. In the second phase (pat-
tern detection), first a target design pattern is defined using
a novel pattern definition language that uses a center-role
main-seed class and two-level surrounding classes. The
matching process consists of an approximate matching and
a structural matching that precisely identify the specified
pattern while providing scalability of the process. We have
successfully experimented with JHotDraw Java GUI sys-
tem which is considered as a benchmark for design pattern
recovery. Our results conform with those approaches that
provided their results publicly. Finally, the proposed ap-
proach has been implemented as a plug-in in the Eclipse
open platform.

References

[1] Jhotdraw start page. http://www.jhotdraw.org, 2006.

[2] The eclipse test and performance tools platform, 2006.
http://www.eclipse.org/tptp.

[3] Formal concept analysis toolkit version 1.0.1.
http://sourceforge.net/projects/conexp.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In
IEEE ICDE ’95, pages 3–14, Washington, DC, USA, 1995.

[5] H. Albin-Amiot et al. Instantiating and detecting design pat-
terns: Putting bits and pieces together, 2001.

[6] G. Antoniol et al. Design pattern recovery in object-oriented
software. InIEEE IWPC ’98, pages 153–160, 1998.

[7] Z. Balanyi and R. Ferenc. Mining design patterns from c++
source code. InIEEE ICSM ’03, page 305, Washington, DC,
USA, 2003.

[8] J. Dong, D. S. Lad, and Y. Zhao. Dp-miner: Design pattern
discovery using matrix. InProceedings of IEEE ECBS’ 07),
pages 371–380, Washington, DC, USA, 2007.

[9] T. Eisenbarth, R. Koschke, and D. Simon. Derivation of
feature component maps by means of concept analysis. In
IEEE CSMR’01, 2001.

[10] M. El-Ramly, E. Stroulia, and P. Sorenson. Recovering soft-
ware requirements from system-user interaction traces. In
SEKE ’02, pages 447–454, New York, NY, USA, 2002.

[11] E. Gamma et al. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1995.

[12] B. Ganter and R. Wille.Formal Concept Analysis: Mathe-
matical Foundations. Springer Verla, 1999.

[13] Y.-G. Gueheneuc, H. Sahraoui, and F. Zaidi. Fingerprinting
design patterns. InIEEE WCRE’04, pages 172–181, Wash-
ington, DC, USA, 2004.

[14] C. Kramer and L. Prechelt. Design recovery by automated
search for structural design patterns in object-oriented soft-
ware. InIEEE WCRE’96, pages 208–215, 1996.

[15] A. D. Lucia et al. A two phase approach to design pattern
recovery. InIEEE CSMR’07, pages 297–306, Amsterdam,
Netherlands, 2007.

[16] K. Sartipi and H. Safyallah. Application of execution pat-
tern mining and concept lattice analysis on software struc-
ture evaluation. InSEKE, pages 302–308, 2006.

[17] N. Shi and R. A. Olsson. Reverse engineering of design
patterns from java source code. InIEEE ASE ’06, pages
123–134, Washington, DC, USA, 2006.

[18] N. Tsantalis et al. Design pattern detection using similarity
scoring. InIEEE TSE, pages 896–909, 2006.

[19] W. Wang and V. Tzerpos. Design pattern detection in eiffel
systems. InIEEE WCRE’05, pages 165–174, 2005.

[20] A. Zaidman et al. Applying webmining techniques to execu-
tion traces to support the program comprehension process.
In IEEE CSMR’05, pages 134–142, 2005.

