
Knowledge Transformation from Task Scenarios to View-based Design Diagrams

Nima Dezhkam and Kamran Sartipi
Dept. Computing and Software, McMaster University, Hamilton, ON. L8S 4K1, Canada

{dezhkan, sartipi}@mcmaster.ca

Abstract

A large body of research in software requirement engi-
neering domain has been dedicated to enhancing the struc-
ture of task scenarios using scenario schemas and pre-
defined structures. However, less attention has been paid to
the application of schemas in extracting design knowledge
from scenarios. In this paper, we propose a schema-based
technique to extract the design knowledge embodied in the
text of scenarios and represent them using multi-view de-
sign diagrams. In this context, we define a framework and a
scenario syntax that allow for generating a set of structured
scenarios that cover the requirements of a software system.
We define a novel scenario schema to parse the informal
text of scenarios and populate an objectbase to maintain
the design knowledge building blocks. Consequently, a set
of guidelines are defined to incrementally build design dia-
grams for software views such as data and function. As a
case study, the design diagram generation for a restaurant
system is presented.

KEYWORDS: Knowledge; Transformation; Scenario;
Schema; Design; Multiple Views; Object base.

1 Introduction

Scenario-based knowledge extraction from requirements
has attracted significant attention within the requirementen-
gineering field [13]. Scenarios are represented in a variety
of formal and informal methods ranging from simple text
and graphical media to relational algebra [6]. In this paper,
we define a scenario as “a structured narrative text describ-
ing a system’s requirements in terms of system-environment
interactions at business rule level”. Scenarios are consid-
ered as easy-to-use and effective means in different phases
of software engineering process, such as: requirement elic-
itation and analysis, design representation, code develop-
ment, testing, and maintenance [11, 8, 10, 14]. A wide
range of research in knowledge extraction from software re-
quirements attempt to investigate: the enhancement of sce-
nario generation by using scenario schemas or pre-defined

structures [3, 17]; scenario analysis and knowledge extrac-
tion [2]; and design-related document generation [15, 16].

In this paper, we introduce a novel technique to trans-
form the knowledge from scenarios into well-formed de-
sign diagrams in two views of data and function. In this
technique scenarios are generated using domain knowledge
and in conformance with a regular expression syntax that
imposes a structure to the scenario representation. The pro-
posed approach allows us to reuse the domain knowledge
and business rules within the scenarios through a scenario
template knowledge base. Further, the generated structured
scenarios are parsed using a novelscenario schemato pop-
ulate an objectbase of design related entities and depen-
dencies. The populated objectbase serves both as a data
source during the design diagram construction and as a
valuable electronic asset of design knowledge to be ana-
lyzed, augmented, and used during the maintenance phase
of the software system. Finally, the information in the ob-
jectbase is used to create standard diagrams, such as Entity-
Relationship diagram (ER) for data view, and function dia-
gram for function view.

The contributions of this paper include: i) a framework
to transform the structured knowledge of the scenarios into
view-based design diagrams; and ii) a novel schema that al-
lows for decomposing the scenarios into an objectbase of
design-related entities and dependencies. As a case study,
the design diagram generation for a fast-food restaurant sys-
tem is presented.

2 Related work

The proposed approach in this paper relates to the liter-
ature for capturing and representing knowledge from task
scenarios for various purposes. We present several ap-
proaches and discuss their similarities and contrasts with
our work.

Anton and Potts [1] discuss different representations of
scenarios in object oriented software engineering and re-
quirements engineering. Jarke et al. [9] present a review on
approaches to scenario-based requirement engineering and
research issues.

1

Lamsweerde et al. [5] introduces KAOS methodology
that supports requirements extraction from high-level goals,
and assigns objects and operations to the various agents in a
system. Their meta-model has similarities with our schema,
however our approach aimed at extracting design diagrams
after capturing the requirements.

In [6] a formal representation of scenarios using tabu-
lar expression is introduced in order to simplify the tasks
of scenario validation, verification, and integration. In [3] a
schema for semantic model of scenarios is defined to help
requirement refinements. Leite et al. [7] aid the process of
scenario construction and management by structuring sce-
narios using a conceptual model along with a form-oriented
language. However, in addition to requirement elicitation
and validation, our framework transforms the generated
structured scenarios into design diagrams. Damas et al.
[4] propose tool-supported techniques to generate behav-
ior models from end-user scenarios, whereas we extract de-
sign diagrams from scenarios. Hufnagel et al. [16] present
a scenario-driven object oriented requirements analysis to
support design of a system. This approach does not define
a scenario schema and also it is methodology dependent. In
[12] a method for modular representation of the scenarios
is proposed that supports the reusability of the scenarios in
different design contexts. This approach is similar to ours
in the sense that it attempts to define a structure for the sce-
narios.

Overall, the significance of our approach is that we gen-
erate scenarios using semi-structured templates and trans-
form the knowledge within the text of scenarios into design
relevant knowledge using guidelines that provide a repeat-
able and view-based design reconstruction process.

3 Proposed framework

In this section, we discuss the steps for transformation of
the knowledge embodied in the text of scenarios into design
knowledge represented by two views data and function of a
software system. These steps are presented using the frame-
work of Figure 1. In a nutshell, the proposed framework
generates a set of structured scenarios and uses a schema to
parse these scenarios into ingredients of the view-based de-
sign representations. The proposed framework consists of
three stages, as follows.

3.1 Stage 1: scenario generation

This stage consists of generating a set of structured text-
based scenarios that conform with a regular expression syn-
tax. To facilitate scenario generation and controlling the
format and vocabulary of the generated scenarios, a pre-
defined set of domain-specific templates can be utilized.

schema

Function
view

Incremental
design

construction

(S
ta

ge
 1

)
(S

ta
ge

 3
)

(S
ta

ge
 2

)
D

es
ig

n
co

ns
tr

uc
tio

n
Sc

en
ar

io
de

co
m

po
si

tio
n

Sc
en

ar
io

ge
ne

ra
tio

n

scenariosscenarios

Generate
scenario

Actor, Information, Action
Objectbase:

Set of
candidate

Set of
qualified

Requirements
against
Validate

Knowledge base:

Requirements:

− Application domain
− Business rules

− Scenario templates

scenario syntax

Add structured scenarios

Conform
with

Data
view

Map onto
sceneario

Figure 1. The proposed design construction
framework from scenarios.

Consequently, at the end of this stage a set of qualified sce-
narios are produced that cover a part or the whole of the
system requirements.

Scenario structure. We define a structure for scenarios
that is imposed by the regular expression syntax in Figure
2 and the semantics that are defined by the application do-
main’s business rules. In this scenario syntax,Actor, Action,
and WorkingInformationare the entity-types and action-
types that will be defined in Section 3.2. Each scenario
consists of a sequence of one or moreActors, Actions, and
Working Information, each of which can have between zero
or moreConstraints. In this form we can generate syntacti-
cally correct scenarios which will be further decomposed to
populate the objectbase in Section 3.2 and generate design
diagrams in Section 3.3.

Scenario templates. In order to facilitate generation
of structured scenarios and reuse of the captured domain
knowledge and vocabulary, the proposed framework
leverages a tool to populate a knowledge-base of scenario
templates which are organized to store the structured
scenarios in a specific application domain. This allows a
software engineer to assemble scenarios using a repository
of domain-specific vocabulary that is maintained for a
software domain. Figure 3 illustrates a sample scenario
template form for a fast-food restaurant system. This form
consists of fields such as: Actor, Information, and Action,
where each field possesses a vocabulary of corresponding
business terms. The generated scenario at the bottom of the
form is a proper assembly of the terms selected from these
fields.

Scenario : {Actor + {Constraint}0..N}1..N
+ {Action + {Constraint}0..N}1..N

+ {Working information +

{Constraint}0..N}1..N

Figure 2. Regular expression syntax for scenario generatio n, where “+” and “0..N” represent com-
position and range, respectively.

Figure 3. Scenario generation template form
for a fast-food restaurant system.

3.2 Stage 2: scenario decomposition

In this stage, the qualified scenarios are mapped onto
the proposed scenario schema in Figure 4 which allows us
to parse the structured scenarios and generate instances of
classes Goal, Actor, Working information, Action, and their
corresponding dependencies that are defined in the scenario
schema. The generated instances incrementally populate
an objectbase of design knowledge that is used to generate
design-related diagrammatic representations.

Using the class diagram representation of the scenario
schema in Figure 4 the texts of the structured scenarios are
parsed and the resulting instances of the classes are storedin
the objectbase. The objectbase is represented as a group of
columns, where each column stores the instances of a class
in the scenario schema that belong to different scenarios. In
other words, a scenario (as a row) in the populated object-
base consists of the instances of the relevant classes of the
scenario schema that are stored in different columns, and a
uniqueindexthat identifies the scenario.

As shown is Figure 4, in our model every instance of
the Scenarioclass is composed of one or more instances
of Actor, Working information, and Action classes, and
zero or more instances ofDependencyclass. Every Action,
Actor, and Working information is associated with zero
ore moreConstraints. Moreover, everyScenarioinstance
is associated with one or more instances ofGoal class.
In the rest of this section the classes of the proposed

Human

information

System

Working

Data
1..*

dependency
Data

Scenario

Is−part−of Has /
Belong−to

Dependency

Is

1..* 1..*

Follow

Action
dependency

Precede

Goal

Actor

Is−associated−with

Constraint

1..*

0..*0..*

1..*

1..*

1

0..*

1..* 0..*

InternalInput Output
action actionaction

Action

Is−parallel−with

Figure 4. Scenario Schema to parse a sce-
nario and populate an objectbase.

scenario schema are introduced along with examples from
a fast-food restaurant system domain.

Goal: represents the reasons and the desired effects for
which the subject system has been produced and used. A
goal can befunctionalwhich corresponds to performing a
task, orobjectivewhich refers to achievement of a quality
for the system. Examples of goals in a fast-food restaurant
system are as follows: handling payment (functional),
preparing food (functional), and shortening order prepara-
tion time (objective).

Actor: an actor is a “human” or a “system” or a
“component of a system” that interacts with other actors
during the execution of the scenarios. Examples of actors
in a restaurant system include: order taker (human),
raw material supplier (system), or food assembly station
(component of a system).

Action: an action is an activity that is performed by an
actor during the execution of the scenarios. Generally, an

action manipulates an instance ofWorking information.
Actions can be categorized into three different types of
Input, Internal, and Output, based on the scope of the
system. Examples include: taking order (input), computing
the price of an order (internal), and delivering food (output).

Working information: refers to the information that
is manipulated (exchanged, transported, communicated,
operated on, stored, etc.) by the scenario’s actor during
the execution of the scenario’s actions. Examples are:
customer’s order, raw material, menu item, and item price.

Dependency: refers to a binary relationship between
two instances of the classesActor, Action, orWorking infor-
mation. When needed, the multiplicity of the participants
in a dependency should be mentioned in the dependency in-
stance. In such a case, the dependency can be represented
by a quadruple with the multiplicity of each participant pro-
ceeding it.

In our schema, a dependency can be of typeData de-
pendencyor Action dependency. Data dependency can be
one of the following subtypes:Is, e.g., “order takerIs an
employee”;Is-associated-with, e.g., “every menu itemIs-
associated-witha recipe” (or (1,menu item,1, recipe));Has,
e.g., “every menu itemHasa name”;Belong-to, that is the
inverse1 of Has, e.g., “an IDBelongs-toan employee”;Is-
part-of, e.g., “a kitchenIs-part-ofa restaurant”.

Action dependency can be one of the following subtypes:
Precede, e.g., “order paymentPrecedesorder delivery”;
Follow, that is the inverse ofPrecede, e.g., “order prepara-
tion Followsorder taking”. Is-parallel-with, e.g., “sending
order to assembly stationIs-parallel-withsending order to
preparation station”.

The proposed scenario schema in Figure 4 includes a
Constraintclass that associates any quantifiable constraint
to Data, Action, andDependencyclasses. Examples of dif-
ferent types of constraints include:capacity, value range,
ordinal, timing, privilege, etc. As an example, a restaurant
system may have “younger than 10” as aconstraintasso-
ciated withactor of some scenario, in order to perform a
specificactionsuch as “offering kids deal”.

3.3 Stage 3: design construction

In this section, we discuss the guidelines that transform
the contents of the objectbase obtained in Stage 2 into
design diagrams. Entity-Relationship (ER) and function
diagrams are the most intuitive and relevant diagrams
that can be directly extracted from the objects within the
objectbase and represent data view and function view of

1For some dependencies, their inverse dependencies are alsoincluded
in the schema to facilitate back tracing of dependencies in the objectbase.

the system, respectively.

Data view. The following guidelines specify the gener-
ation of ER diagrams from the objectbase:

Data view step I. Extract all instances ofActor, Working
information, andData dependencyclasses from the object
base and apply the following rules on them:

1. Instances ofActor and Working informationare candidate
entities/attributes.

2. Instances ofIs dependency imply generalization andinheri-
tance relationships, i.e., AIs B, means A is sub-entity of B,
or B is super-entity of A.

3. Instances ofIs-associated-withdependency imply candidate
association relationships.

4. Instances ofHas and Belong-todependencies are used to
identify the attributes of the entities, i.e., AHas B (or B
Belongs-toA) means B is an attribute of entity A.

5. Instances ofIs-part-of dependency imply candidate decom-
position relationships.

6. Candidate entities/attributes that never appear on the right-
hand side of aHasdependency (or left-hand side of aBelong
to) dependency are entities and not attributes.

7. Candidate entities/attributes that appear on either side of aIs,
Is-associated-with, or Is-part-of relationship are considered
as entities.

8. Candidate entities/attributes that appear on the left-hand side
of a Hasdependency (right-hand side of aBelong todepen-
dency) are considered as entities.

9. Candidate entities/attributes that appear on the right-hand
side of aHas dependency (or left-hand side of aBelong to
dependency) and do not apply in any of the rules vi-viii, are
considered as the attributes of the entity on the other side of
that dependency.

Data view step II.Depict every entity by a rectangle,
every attribute of an entity as a bubble connected to it and
label them by their names. Every relationship between two
entities can be represented by a line connecting them. Label
every relationship according to the type of dependency it
came from, e.g., “is”, “is-part-of”, etc.

Function view. Function view of a system is well
represented by function diagrams. The following guideline
specifies the generation of function diagrams from the
objectbase.

Function view step I. Extract all instances ofAction, Ac-
tion dependency, and Constraint classes from the object
base and apply the following rules on them:

1. Instances ofActionclass are the functions.
2. Instances of theFollow andPrecededependencies determine

the time-order of execution of the functions. To simplify
the diagram generation, transform all thePrecededepen-
dencies toFollow, i.e., for all functionsf1 andf2, change
f1Precedef2 to f2Followf1.

3. The participants of aIs-parallel-with dependency must be
executed concurrently.

4. The condition(s) for a function to follow another is deter-
mined by theConstraints related to the function, actor, and
working information in the corresponding scenario that the
“following” appears.

Function view step II. GenerateFollow+ relationship
(the transitive-closure of theFollow), i.e., f1Follow+f2

means there exists a set of functionsgi where,f1 Follow g1,
g1 Follow g2, ...,gn Follow f2.

Function view step III. Sort the functions in ascending
order based on the number of the functions they follow, i.e.,
based on the number of times they appear on the left hand
side of aFollow relationship.

Function view step IV. Start from the beginning of the
sorted list, depict the first function (name A) with a square
and label it by its name. List all the functions thatFollow
A. If the list contains only one function (name B), depict B
and connect A to B with an arrow. If the followers list con-
tains more than one function (name B, C, ...), then a choice
condition has occurred. If there are any pair of functions
(name B and C) in the list that have anIs-parallel-withde-
pendency, connect A to B and C with arrows and anAND
bubble. Otherwise the functions are connected using anOR
bubble. Next, all arrows are labeled with the triggering con-
dition(s) obtained in rule “4” above. Finally, remove A from
the list and repeatFunction view step IV, until the list is
empty.

The functions in the function view correspond to the ac-
tions performed by the actors in the system, and can be con-
sidered as candidate methods of classes in the detailed de-
sign of the system. Also, the sequence and the AND and OR
relationships between the functions reflect the design deci-
sions that should be considered during the implementation
phase of the system.

The above guideline can be semi-automated. User in-
volvement is required in cases of conflicts or inconsisten-
cies, such as duplicate usage of actor or action names in
different roles, etc. In such cases user can be prompted to
perform manual resolution.

The realization of the scenario to design transformation
will be presented as a case study in the next section.

4 Case study: Fast-food Restaurant System

In this section, the results of applying the proposed
framework to the case of a fast-food restaurant system is
presented.

4.1 Stage 1: scenario generation

The following scenarios that conform with the proposed
scenario syntax in Figure 2 were generated using our pro-

prietary scenario generation tool. Note that for simplicity
in demonstration, the following scenarios demonstrate little
interactions and few conditions.
• Scenario #1:“Order taking station computes and reports
the price of the orders.”
• Scenario #2:“Order taking station sends the paid orders
to assembly station.”
• Scenario #3:“Order taker logs into the OT station using
ID and password.”
• Scenario #4:“Order taker initiates orders.”
• Scenario #5:“Order taker adds and removes (edit) menu
items of an unpaid order.”
• Scenario #6:“Order taker enters the amount of money
received from the customer (cash-in) to OT station.”
• Scenario #7:“Order taker defers the payment of orders.”
• Scenario #8:“Order taker reviews the orders.”
• Scenario #9:“Order taker calls-back unpaid orders.”
• Scenario #10: “Order taker returns the change (and
receipt) for the order.”
• Scenario #11:“Order taker sends the cash exceeding
cash limit to the cash safe.”
• Scenario #12:“Order taker logs out from his/her ID.”

4.2 Stage 2: scenario decomposition

At this stage, the scenarios were mapped onto the pro-
posed scenario schema to instantiate different class in-
stances and the resulting instances are stored in the object-
base. Table 1 presents a part of the objectbase that is pop-
ulated with instances ofData andAction and fiveDepen-
dencyclasses from Scenarios #1 to #10 above.

4.3 Stage 3: design construction

In this stage we followed the guideline presented in Sec-
tion 3.3 to construct the diagrams for data and function
views.

Data view. Candidate entities/attributes are stored in
differentData columns (i.e.,Actor|System, Actor|Human ,
andWorking information) of the objectbase. Similarly,
the dependencies among these candidates are stored in the
objectbase (underIs, Belong-to, ... columns). A part of the
the ER diagram for the restaurant system (i.e., order taker
component), constructed using the guideline forData view
is shown in Figure 5.

Function view. The list of extracted functions sorted
by Follows+ relationship is shown in Table 2. Also, the
extracted dependencies between these actions are stored
in differentAction dependencycolumns of the objectbase.
The function diagram for the order-taker component of
the restaurant system (constructed using the guideline for
Function view) is shown in Figure 6.

Table 1. A part of the objectbase created from the scenarios # 1 to #10.
Index Actor|System Actor|Human Working information Action|Input Action|Internal Action|Output

1 OT Station - order,price - compute price report price

2 OT Station, ASM station - paid order - - send paid order to ASM station

3 - order taker,OT station ID&password - login to system -

4 - order taker order - initiate order -

5 - order taker menu item,unpaid order - add/remove menu item -

6 - order taker,OT station cash-in enter cash-in - -

7 - order taker order - defer payment -

8 - order taker order - review -

9 - order taker unpaid orders - call-back -

10 - order taker change/receipt - - return change/receipt

Index Is-associated-with Belong-to Is-part-of Follow Precede

1 - (price,order) (report price, compute price) (report price, compute price) -

2 - - (1,paid order,1,order) (send paid order to ASM station, report price), ... -

3 - (ID&password,order taker) - - (login to system, send paid order to ASM station), ...

4 (1,order taker,n,customer order) - - (initiate order, login to system) (initiate order, compute price)

5 (n,menu item,1,order) - - (edit order, initiate order), ... (edit Order, compute price), ...

6 - (cash-in,order) - (enter cash-in, report price), ... (enter cash-in, send paid order to ASM station), ...

7 - - - (defer payment, edit order), ... -

8 - - - (review orders, login to system) -

9 - - (1,unpaid order,1,order) (call-back unpaid orders, login to system) (call-back unpaid orders, enter cash-in), ...

10 - (change/receipt,order) - (return change/receipt, enter cash-in), ... (return change/receipt, send paid order to ASM station)

paid

(cash limit)cash

cash safe

order
take

works in

order
unpaid

ordersation

(ID,password)

order taker menu itemconsists

(price,cash−in,change)

OT

Figure 5. Generated Entity-Relationship dia-
gram for the order taking component.

The generated design diagrams and the existing knowl-
edge in objectbase will enable us to extract other design di-
agrams such as class diagram of the system. Figure 7 illus-
trates the complete class diagram of the restaurant system.
This diagram is obtained from the ER diagram of the sys-
tem that was generated in the proposed framework. The
space limitation of the paper does not allow us to provide
the required guidelines.

5 Discussion and conclusion

In this paper, we presented a systematic and semi-
automatic approach for transforming the design knowledge
within task scenarios onto a set of design diagrams. We pro-
posed a framework with three major stages of scenario gen-
eration, scenario decomposition, and design construction.

Table 2. List of actions in order taking com-
ponent and corresponding to Follow relation.

Index Action Follows+

1 Login using ID & password -
2 Logout the system 1
3 Review orders 1
4 Initiate order 1
5 Call-back unpaid orders 1
6 Edit orders 1,5
7 Compute price 1,5,6
8 Report price 1,5,6,7
9 Defer order payment 1,5,6,7,8
10 Enter cash-in 1,4,5,6,7,8
11 Return change & receipt 1,4,5,6,7,8,10
12 Send order to assembly station 1,5,6,7,8,10,11
13 Send excess cash to cash safe1,4,5,6,7,8,10,11,12

The task scenarios are structured by the means of a regular
expression syntax and can be reused through a knowledge-
base of scenario templates. A scenario schema has been
proposed as the core of the approach that allows us to de-
compose scenarios into design entities and dependencies as
the means to populate an objectbase. The generated ob-
jectbase would maintain the building blocks that allow the

OR

ID & Password

order
payment of

Defer

Enter
cash−in

Return

receipt

cash safe
cash to

Send excess

price
Report

price
ComputeAdd/remove

menu items
to/from order

order
Initiate

Review
orders

 using
Login

Logout
the system

orders
unpaid

Call−back

change and

Send order to
assembly

station

OR

Figure 6. Generated function diagram for or-
der taking component.

− role

Material
− name
− quantity

Menu Item

− price

Paid Order Unpaid Order

��
��
��
��

��
��
��
��

− price
− cash−in
− change

nInventory Staff 1PreparerManager

1 n

mm

n

m

n n n

m

Chute
− name
− quantity

1 1 Cash Safe
− balance − balance

Cash

1

n

1

n

1

1

1

Preparation AssemblyInventory
− cash limit
− cash balance

n

Order Taking

Order
Assembler Order Taker

Station

− type
− No.

Staff

− ID
− password

Figure 7. Generated class diagram of the
whole restaurant system.

engineer to generate the design diagrams for two views of
the software system using common-practice modeling.

We compared the constructed Entity Relationship dia-
gram in Figure 5 with the similar diagram generated for the
same restaurant system by a software engineer. In this com-
parison 6 out of 8 entities for the order taking component
were the same in both diagrams which indicates a promis-
ing result. The proposed technique provides a disciplined
and structured approach to requirement-to-design transfor-
mation process within the knowledge engineering field. The
proposed scenario schema provides a clear understanding
of the major building blocks of the software system’s func-
tional entities and their relationships. The populated ob-
jectbase serves both as a data source during the design dia-
gram construction and as a valuable electronic asset of de-
sign knowledge to be analyzed, augmented, and used during

the maintenance phase of the software system. Specifically,
the objectbase can be mined to extract more general design
decisions that is not feasible by a human-based analysis.

References

[1] A. Anton and C. Potts. Representational framework for scenarios of
system use. InRequirements Engineering, volume 3, pages 219–241,
1998.

[2] L. Chung and K. Cooper. A knowledge-based cots-aware require-
ments engineering approach. InSEKE ’02: Proceedings of the 14th
international conference on Software engineering and knowledge en-
gineering, pages 175–182, New York, NY, USA, 2002. ACM Press.

[3] C.Potts. Scenic: A strategy for inquiry-driven requirements determi-
nation. InProc. RE’99: International Symposium on Requirements
Engineering, Limerick, Ireland, June, 1999.

[4] C. Damas, B. Lambeau, and P. Dupont. Generating annotated be-
havior models from end-user scenarios.IEEE Trans. Softw. Eng.,
31(12):1056–1073, 2005.

[5] R. Darimont, P. Massonet, and A. Van Lamsweerde. KAOS: AnEn-
vironment for Goal-Driven Requirements Engineering.In Proceed-
ings of the ICSE’98, pages 1–2, 1998.

[6] J. Desharnais, R. Khedri, and A. Mili. Representation, validation
and integration of scenarios using tabular expressions.Journal of
Formal Methods in Software Development. Special issue on tabular
expressions, 2002.

[7] J. C. S. do Prado Leite, G. D. S. Hadad, J. H. Doorn, and G. N.
Kaplan. A scenario construction process.Requirements Engineering,
5(1):38–61, 2000.

[8] Haumer, P. Pohl, and K. Weidenhaupt. Requirements elicitation and
validation with real world scenes. InIEEE Transactions on Software
Engineering 24, pages 1036–1054, 1998.

[9] M. Jarke, T. X. Bui, and J. M. Carroll. Scenario management: An
interdisciplinary approach.Requir. Eng., 3(3/4):155–173, 1998.

[10] E. Nasr, L. McDermid, and G. Bernat. Eliciting and specifying re-
quirements with use cases for embedded systems.In Proceedings of
the 7th International Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS’2), pages 350–357, January 2002.

[11] B. A. Nuseibeh and S. M. Easterbrook. Requirements engineering:
A roadmap.In A. C. W. Finkelstein (ed) ”The Future of Software En-
gineering ”. (Companion volume to the proceedings of the ICSE’00),
2000.

[12] J. Ralyte. Reusing scenario based approaches in requirement engi-
neering methods: Crews method base.In REP’99, pages 305–309,
1999.

[13] A. Sutcliffe. Scenario-based requirements engineering. In Proceed-
ings of the International Conference on Requirements Engineering
(RE’03), pages 320– 329, 2003.

[14] A. G. Sutcliffe. Scenario-based requirements analysis. Requirements
Engineering Journal, 3(1), 1998.

[15] Y. E. Tsai, H. C. Jiau, and K.-F. Ssu. Scenario architecture - a
methodology to build a global view of oo software system. In
COMPSAC, pages 446–451, 2003.

[16] W. Wang, S. Hufnagel, P. Hsia, and S. M. Yang. Scenario driven
requirements analysis method. InProceedings of the Second Inter-
national Conference on Systems Integration, pages 446–451, 1992.

[17] H. H. Zhang and A. Ohnishi. A transformation method of scenarios
from different viewpoints. InAPSEC 2004, pages 492–501, 2004.

