Knowledge Transfor mation from Task Scenariosto View-based Design Diagrams

Nima Dezhkam and Kamran Sartipi
Dept. Computing and Software, McMaster University, Haom|tON. L8S 4K1, Canada
{dezhkan, sartigi@mcmaster.ca

Abstract structures [3, 17]; scenario analysis and knowledge extrac
tion [2]; and design-related document generation [15, 16].

In this paper, we introduce a novel technique to trans-

A large body of research in software requirement engi- ; he knowledae f S 1§ dd
neering domain has been dedicated to enhancing the struc’O'M the knowledge from scenarios into well-formed de-

ture of task scenarios using scenario schemas and pre-S/9n diagrams in two views of data and function. In this
defined structures. However, less attention has been paid totecc?rjlque sfcenarlos arghgeneratelzd using dqmam knowlehdge
the application of schemas in extracting design knowledge"“n In conformance with a regu ar expressmn_syntax that
from scenarios. In this paper, we propose a schema-basedMPOses a structure to the scenario representation. The pro
technique to extract the design knowledge embodied in theDosecj approach aIIovys us to reuse the domain knowledge
text of scenarios and represent them using multi-view de_and business rules within the scenarios through a scenario
sign diagrams. In this context, we define a framework and atemplate knowledge base. Further, the generated strdcture

scenario syntax that allow for generating a set of struatiure scenarios are parsed using a nanario scheme pop-

scenarios that cover the requirements of a software system.mate an objectbase of design related entities and depen-

We define a novel scenario schema to parse the informald€ncies. The populated objectbase serves both as a data

text of scenarios and populate an objectbase to maintain SOUrce during th? design dlagrgm construction and as a
valuable electronic asset of design knowledge to be ana-

the design knowledge building blocks. Consequently, a seﬁ q 4. and d durina th . h
of guidelines are defined to incrementally build design dia- yzed, augmented, an use urmg.t c malnter!ance phase
of the software system. Finally, the information in the ob-

grams for software views such as data and function. As a. ;) .
case study, the design diagram generation for a restaurantJeCtbase is used to create standard diagrams, such as-Entity
system is presented Relationship diagram (ER) for data view, and function dia-

KEYWORDS: Knowledge; Transformation; Scenario; gram forfungtlorj VIEW. . . .
Schema; Design: Multiple Views; Object base. The contributions of this paper include: i) a framework

to transform the structured knowledge of the scenarios into
view-based design diagrams; and ii) a novel schema that al-
1 Introduction lows for decomposing the scenarios into an objectbase of
design-related entities and dependencies. As a case study,

) . . the design diagram generation for a fast-food restaurant sy
Scenario-based knowledge extraction from requirements;g 1, is presented.

has attracted significant attention within the requirereent

gineering field [13]. Scenarios are represented in a variety

of formal and informal methods ranging from simple text 2 Related work

and graphical media to relational algebra [6]. In this paper

we define a scenario aa ‘structured narrative text describ- The proposed approach in this paper relates to the liter-
ing a system’s requirements in terms of system-environmenature for capturing and representing knowledge from task
interactions at business rule levelScenarios are consid- scenarios for various purposes. We present several ap
ered as easy-to-use and effective means in different phaseproaches and discuss their similarities and contrasts with
of software engineering process, such as: requirement elic our work.

itation and analysis, design representation, code develop Anton and Potts [1] discuss different representations of
ment, testing, and maintenance [11, 8, 10, 14]. A wide scenarios in object oriented software engineering and re-
range of research in knowledge extraction from software re- quirements engineering. Jarke et al. [9] present a review on
guirements attempt to investigate: the enhancement of sceapproaches to scenario-based requirement engineering and
nario generation by using scenario schemas or pre-definedesearch issues.

Add structured scenarios

Knowledge base: i

— Scenario templates
Generate Set of Set of

scenario i i
candidate qualified
| scenarios P~ scenarios

Lamsweerde et al. [5] introduces KAOS methodology
that supports requirements extraction from high-levelgioa
and assigns objects and operations to the various agents in
system. Their meta-model has similarities with our schema,

Requirements:
- Business rules

(Stage 1)
Scenario
generation

Conform

. . . . - Application d i
however our approach aimed at extracting design diagrams ¢ ppcarion domam soone x| wapomo
after capturing the requirements. oz A sceneario
. . . [N] 8_ v schema
In [6] a formal representation of scenarios using tabu- g’gg Objectbase:
lar expression is introduced in order to simplify the tasks =" g Zggidnf[e Actor, Information, Action

of scenario validation, verification, and integration. 3 & Requiremers Incremental
schema for semantic model of scenarios is defined to help’rg Y concarattion Y
requirement refinements. Leite et al. [7] aid the process of Daia Fugicgvgn
scenario construction and management by structuring sceZ | |
narios using a conceptual model along with a form-oriented

language. However, in addition to requirement elicitation

and validation, our framework transforms the generated Figyre 1. The proposed design construction
structured scenarios into design diagrams. Damas et al. framework from scenarios.

[4] propose tool-supported techniques to generate behav-

ior models from end-user scenarios, whereas we extract de-

sign diagrams from scenarios. Hufnagel et al. [16] present
a scenario-driven object oriented requirements analgsis t
e o oy sspoccg, EGTSEGET a1 G of s Sage et of ualfie .
[12] a method for modular representation of the scenarios"2M10s are p_roduced that cover a part or the whole of the
is proposed that supports the reusability of the scenamios i system requirements.

different design contexts. This approach is similar to ours

in the sense that it attempts to define a structure for the sce- Sgen_ano sruciure. We define a strugture for scenarios
narios. that is imposed by the regular expression syntax in Figure

Overall, the significance of our approach is that we gen- 2 and the semantics that are defined by the application do-

. . . main’s business rules. In this scenario syntsotor, Actio
erate scenarios using semi-structured templates and trans Y n

form the knowledge within the text of scenarios into design and Workinginformationare the entity-types and action-

X o : types that will be defined in Section 3.2. Each scenario
relevant knowledge using guidelines that provide a repeat- . .
.) . consists of a sequence of one or méiors Actions and
able and view-based design reconstruction process.

Working Informationeach of which can have between zero
or moreConstraints In this form we can generate syntacti-

3 Proposed framework cally correct scenarios which will be further decomposed to
populate the objectbase in Section 3.2 and generate design

1on

esign

D
constructi

In this section, we discuss the steps for transformation ofdlagrams in Section 3.3.
the knowledge embodied in the text of scenarios into design
knowledge represented by two views data and function of a
software system. These steps are presented using the fram
work of Figure 1. In a nutshell, the proposed framework .
generates a set of structured scenarios and uses a s,chemalﬁyerages a tO.OI to populate a knowledge-base of scenario
parse these scenarios into ingredients of the view-based detemplates which are organized to store the structured

sign representations. The proposed framework consists oiscftcvarr'os :1” ;Spref'f'c apﬂaatlon rc:orrinam. i:h's ?Ilowsitar
three stages, as follows. software engineer to assemble scenarios using a repository

of domain-specific vocabulary that is maintained for a

. . software domain. Figure 3 illustrates a sample scenario

3.1 Stagel: scenariogeneration template form for a fast-food restaurant system. This form

consists of fields such as: Actor, Information, and Action,

This stage consists of generating a set of structured text-where each field possesses a vocabulary of corresponding

based scenarios that conform with a regular expression synbusiness terms. The generated scenario at the bottom of the

tax. To facilitate scenario generation and controlling the form is a proper assembly of the terms selected from these

format and vocabulary of the generated scenarios, a prefields.

defined set of domain-specific templates can be utilized.

Scenario templates. In order to facilitate generation
f structured scenarios and reuse of the captured domain
nowledge and vocabulary, the proposed framework

Scenario : {Actor + {Constraint?-V}1-¥ 4+ [fAction + {Constrain}®-N}1-N 4+ [Working information +
{Constrain}?--N}1-N

Figure 2. Regular expression syntax for scenario generatio n, where “+” and “0..N” represent com-
position and range, respectively.

Scenario Generation Template Form

Human Actor: : Orcler taker System Actor: None v| Information: Receipt [v
Choose...
Order taker

Handling payment >
Preparing food
oals: Taking order ~

Assembly staft
Action: Re Preparation staff
Inventory staft
Manager
Mane

Actor Working Input Internal Output
information action action action
Generated Scenario:
Order taker returns the receipt.
’ Human‘ ’System‘ L 0.*
Dependency|
Data Action
dependenc dependency
VAN

l l |
Is—associated—witb Is—part-of Bell-ioa}?g/— to Precedﬁ Follow
Is—parallel—witﬂ

Figure 3. Scenario generation template form
for a fast-food restaurant system.

3.2 Stage2: scenario decomposition

In this stage, the qualified scenarios are mapped onto Figure 4. Scenario Schema to parse a sce-
the proposed scenario schema in Figure 4 which allows us nario and populate an objectbase.

to parse the structured scenarios and generate instances of

classes Goal, Actor, Working information, Action, and thei

corresponding dependencies that are defined in the scenario

schema. The generated instances incrementally populatécenario schema are introduced along with examples from
an objectbase of design knowledge that is used to generaté fast-food restaurant system domain.

design-related diagrammatic representations.

Using the class diagram representation of the scenario Goal: represents the reasons and the desired effects for
schema in Figure 4 the texts of the structured scenarios aravhich the subject system has been produced and used. A
parsed and the resulting instances of the classes are stored goal can beunctionalwhich corresponds to performing a
the objectbase. The objectbase is represented as a group &&sk, orobjectivewhich refers to achievement of a quality
columns, where each column stores the instances of a clas#r the system. Examples of goals in a fast-food restaurant
in the scenario schema that belong to different scenanios. | System are as follows: handling payment (functional),
other words, a scenario (as a row) in the populated object-preparing food (functional), and shortening order prepara
base consists of the instances of the relevant classes of théion time (objective).
scenario schema that are stored in different columns, and a
uniqueindexthat identifies the scenario. Actor: an actor is a “human” or a “system” or a

As shown is Figure 4, in our model every instance of “component of a system” that interacts with other actors
the Scenarioclass is composed of one or more instances during the execution of the scenarios. Examples of actors
of Actor, Working information and Action classes, and in a restaurant system include: order taker (human),
zero or more instances Bfependencglass. Every Action, raw material supplier (system), or food assembly station
Actor, and Working information is associated with zero (component of a system).
ore moreConstrains. Moreover, everyscenarioinstance
is associated with one or more instancesGufal class. Action: an action is an activity that is performed by an
In the rest of this section the classes of the proposedactor during the execution of the scenarios. Generally, an

action manipulates an instance Working information the system, respectively.

Actions can be categorized into three different types of

Input, Internal and Output based on the scope of the Data view. The following guidelines specify the gener-

system. Examples include: taking order (input), computing ation of ER diagrams from the objectbase:

the price of an order (internal), and delivering food (oufpu Data view step.|Extract all instances dfctor, Working
information andData dependencglasses from the object

Working information: refers to the information that base and apply the following rules on them:

is manipulated (exchanged, transported, communicated, 1. Instances ofictor and Working informationare candidate

operated on, stored, etc.) by the scenario’s actor during entities/attributes.

the execution of the scenario’s actions. Examples are: 2 |nstances ofs dependency imply generalization aimfheri-

customer’s order, raw material, menu item, and item price. tance relationships, i.e., 5 B, means A is sub-entity of B,

or B is super-entity of A.

Dependency: refers to a binary relationship between 3. |nstances ofs-associated-witilependency imply candidate

two instances of the classAstor, Action or Working infor- association relationships.
mation When needed, the multiplicity of the participants 4. |nstances oHas and Belong-todependencies are used to
in a dependency should be mentioned in the dependency in- identify the attributes of the entities, i.e., Kas B (or B

stance. In such a case, the dependency can be represented Belongs-toA) means B is an attribute of entity A.
by a quadruple with the multiplicity of each participant pro 5. Instances ofs-part-of dependency imply candidate decom-

ceeding it. position relationships.

In our SChema’ a dependency can be of tiata de- 6. Candidate entities/attributes that never appear onigié-r
pendencyor ACUO_” dependencyData dependency can be hand side of &lasdependency (or left-hand side oBalong
one of the following subtypests, e.g., “order takets an to) dependency are entities and not attributes.
employee”;ls-associated-withe.g., “every menu itenfs- 7. Candidate entities/attributes that appear on eithercdidls,
associated-witta recipe” (or (1,menu item, 1, recipe}jas Is-associated-withor Is-part-of relationship are considered
e.g., “every menu iterhlasa name”;Belong-tq that is the as entities.
inversé of Has e.g., "an IDBelongs-taan en:ployee"js- 8. Candidate entities/attributes that appear on the keitiiside
part-of, e.g., “a kitcheris-part-ofa restaurant”. of aHasdependency (right-hand side oB&long todepen-

Action dependency can be one of the following subtypes: dency) are considered as entities.

Precede e.g. “orc.Jer paymenPrecedesorder delivery”; 9. Candidate entities/attributes that appear on the tightd
Follow, that is the inverse dPrecedee.g., “order prepara- side of aHas dependency (or left-hand side oB&long to
tion Follows order taking”. Is-parallel-with, e.g., “sending dependency) and do not apply in any of the rules vi-viii, are
order to assembly statids-parallel-with sending order to considered as the attributes of the entity on the other dide o
preparation station”. that dependency.

The proposed scenario schema in Figure 4 includes a Data view step Il.Depict every entity by a rectangle,
Constraintclass that associates any quantifiable constraintevery attribute of an entity as a bubble connected to it and
to Data, Action, andDependencglasses. Examples of dif- label them by their names. Every relationship between two
ferent types of constraints includeapacity value range entities can be represented by a line connecting them. Label
ordinal, timing, privilege, etc. As an example, a restaurant every relationship according to the type of dependency it
system may haveybunger than 10as aconstraintasso- came from, e.g., “is”, “is-part-of”, etc.
ciated withactor of some scenario, in order to perform a

specificactionsuch as “offering kids deal”. Function view. Function view of a system is well
represented by function diagrams. The following guideline

3.3 Stage3: design construction specifies the generation of function diagrams from the
objectbase.

In this section, we discuss the guidelines that transform
the contents of the objectbase obtained in Stage 2 into
design diagrams. Entity-Relationship (ER) and function
diagrams are the most intuitive and relevant diagrams
that can be directly extracted from the objects within the
objectbase and represent data view and function view of

Function view step.|Extract all instances diction, Ac-
tion dependengyand Constraintclasses from the object
base and apply the following rules on them:

1. Instances ofctionclass are the functions.

2. Instances of thEollow andPrecedalependencies determine
the time-order of execution of the functions. To simplify
the diagram generation, transform all tReecededepen-
dencies toFollow, i.e., for all functionsf; and f2, change
f1Precedé; to faFollowf;.

1For some dependencies, their inverse dependencies armcllsted
in the schema to facilitate back tracing of dependenciekarobjectbase.

3. The participants of #s-parallel-with dependency must be prietary scenario generation tool. Note that for simpficit
executed concurrently. _) in demonstration, the following scenarios demonstrate lit
4. The condition(s) for a function to follow another is deter interactions and few conditions
mined by theConstraing refated to the function, actor, and g o arig 41 “Order taking station computes and reports
working information in the corresponding scenario that the . ,,
the price of the orders.

“following” appears.
Function %ie\?vpstep l|GenerateFollow™ relationship ~ ® Scenario #2Order taking station sends the paid orders

(the transitive-closure of theollow), i.e., fiFollowtf, 0 assembly station” . ' .
means there exists a set of functignsvhere,f; Follow g1, e Scenario #3Order taker logs into the OT station using
g1 Follow g5, ..., g, Follow f5. ID and password!

e Scenario #4*Order taker initiates orders”
Function view step IlISort the functions in ascending ® Scenario #5"Order taker adds and removes (edit) menu
order based on the number of the functions they follow, i.e., items of an unpaid order”

based on the number of times they appear on the left hand® Scenario #6:“Order taker enters the amount of money
side of aFollow relationship. received from the customer (cash-in) to OT station”

e Scenario #7¢Order taker defers the payment of orders.”

Function view step IVStart from the beginning of the ® Scenario #8Order taker reviews the orders”
sorted list, depict the first function (name A) with a square ® Scenario #9*Order taker calls-back unpaid orders”
and label it by its name. List all the functions tifatllow ® Scenario #10:“Order taker returns the change (and
A. If the list contains only one function (name B), depict B receipt) for the order”
and connect A to B with an arrow. If the followers list con- ® Scenario #11:“Order taker sends the cash exceeding
tains more than one function (name B, C, ...), then a choicecash limit to the cash safe.”
condition has occurred. If there are any pair of functions ® Scenario #12°Order taker logs out from his/her ID."
(name B and C) in the list that have Enaparallel-withde-
pendency, connect A to B and C with arrows andfddtD
bubble. Otherwise the functions are connected usingQRn
bubble. Next, all arrows are labeled with the triggering-con

dition(s) obtained in rule “4” above. Finally, remove A from . ; i ' i
the list and repeaunction view step IVuntil the list is posed scenario schema to instantiate different class in-

empty. stances and the resulting instances are.stored in the _object
The functions in the function view correspond to the ac- °ase. Table 1 presents a part of the objectbase that is pop-

tions performed by the actors in the system, and can be condated with instances dbata and Actionand fiveDepen-

sidered as candidate methods of classes in the detailed dedeéncyclasses from Scenarios #1 to #10 above.

sign of the system. Also, the sequence and the AND and OR

relationships between the functions reflect the design-deci 4.3 Stage 3: design construction

sions that should be considered during the implementation

phase of the system. . ~Inthis stage we followed the guideline presented in Sec-
The above guideline can be semi-automated. User in-tjon 3.3 to construct the diagrams for data and function
volvement is required in cases of conflicts or inconsisten- yje\ys.

cies, such as duplicate usage of actor or action names in pap view, Candidate entities/attributes are stored in
different roles, etc. In s_uch cases user can be prompted tQyittarentData columns (.. Actor| system, Actor| ruman,
perform manual resolution. , _andWorking information) of the objectbase. Similarly,

The realization of the scenario to design transformation 1, dependencies among these candidates are stored in the
will be presented as a case study in the next section. objectbase (undes, Belong-to ... columns). A part of the

the ER diagram for the restaurant system (i.e., order taker
4 Casestudy: Fast-food Restaurant System component), constructed using the guidelineData view
is shown in Figure 5.

In this section, the results of applying the proposed Function view. The list of extracted functions sorted
framework to the case of a fast-food restaurant system isby Follows™* relationship is shown in Table 2. Also, the
presented. extracted dependencies between these actions are stored
4.1 Stagel: scenariogeneration in different Action dependencgolumns of the objectbase.

The function diagram for the order-taker component of

The following scenarios that conform with the proposed the restaurant system (constructed using the guideline for

scenario syntax in Figure 2 were generated using our pro-Function view) is shown in Figure 6.

4.2 Stage 2: scenario decomposition

At this stage, the scenarios were mapped onto the pro-

Table 1. A part of the objectbase created from the scenarios # 1 to #10.
Actor|Human | Working in formation | Action|rnput | Action|nternai | Action|output |

| Index | ACtOT|System.

1 OT Station order,price compute price report price

2 OT Station, ASM station paid order send paid order to ASM station|
3 - order taker,OT station ID&password login to system

4 - order taker order initiate order

5 - order taker menu item,unpaid order add/remove menu item

6 - order taker,OT station cash-in enter cash-in

7 - order taker order defer payment

8 - order taker order review

9 - order taker unpaid orders call-back

10 order taker change/receipt return change/receipt

Follow Precede

Is-associated-witﬂ Belong-to Is-part-of

| Index

1 - (price,order) (report price, compute price) (report price, compute price)

2

(1,paid order,1,order)

(send paid order to ASM station, report price), ..

3

(ID&password,order taker)

(login to system, send paid order to ASM station), ...|

4 (1,order taker,n,customer order)

(initiate order, login to system)

(initiate order, compute price)

5 (n,menu item,1,order)

(edit order, initiate order), ...

(edit Order, compute price), ...

(cash-in,order)

(enter cash-in, report price), ...

(enter cash-in, send paid order to ASM station), ...

(defer payment, edit order), ...

(review orders, login to system)

(1,unpaid order,1,order)

(call-back unpaid orders, login to system)

(call-back unpaid orders, enter cash-in), ...

(change/receipt,order)

(return change/receipt, enter cash-in), ...

(return change/receipt, send paid order to ASM statiof

rice,cash-in,change;
(ID,password) ® 79)

take

order taker order SNSILS g menu tem Table 2. List of actions in order taking com-
ponent and corresponding to Follow relation.
works in
cash (cash iy [Index | Action | Follows"™ |
sation Erger ‘order 1 Login using ID & password -
cash safe 2 Logout the system 1
3 Review orders 1
Figure 5. Generated Entity-Relationship dia- 4 Initiate order 1
gram for the order taking component. 5 Call-back unpaid orders 1
6 Edit orders 15
The generated design diagrams and the existing knowl{ 7 Compute price 15,6
edge in objectbase will enable us to extract other design di{ 8 Report price 1,5,6,7
agrams such as class diagram of the system. Figure 7 illust 9 Defer order payment 156,7,8
trates the complete class diagram of the restaurant system. 10 Enter cash-in 14,56,7,8
This diagram is obtained from the ER diagram of the sys-| 11 Return change & receipt 1,4,5,6,7,8,10
tem that was generated in the proposed framework. Thg 12 | Send order to assembly statign 1,5,6,7,8,10,11
space limitation of the paper does not allow us to provide| 13 | Send excess cash to cash s4fel,4,5,6,7,8,10,11,13

the required guidelines.

5 Discussion and conclusion The task scenarios are structured by the means of a regular

expression syntax and can be reused through a knowledge-
In this paper, we presented a systematic and semi-base of scenario templates. A scenario schema has been
automatic approach for transforming the design knowledgeproposed as the core of the approach that allows us to de-
within task scenarios onto a set of design diagrams. We pro-compose scenarios into design entities and dependencies as
posed a framework with three major stages of scenario genthe means to populate an objectbase. The generated ob-
eration, scenario decomposition, and design construction jectbase would maintain the building blocks that allow the

Logout
the system

Call-back
unpaid
orders

Login
using
ID & Password

Add/remove
menu items

to/from order

Initiate
order

Compute
price

Review

orders Report

price

(1]

Defer
payment of
order

(2]

Return
»| change and
receipt

Enter
cash-in

Send excess [3]
cash to

cash safe

Send order to
assembly
station

[——

Figure 6. Generated function diagram for or-
der taking component.

(4]

Station Staff [5]
—type
- No.

-1D
- password

Z} n —role
(6l
al \ ! \ \ Order
‘ Manager ‘ ‘Invemory Staff ‘ ‘Preparer ‘ ‘Assernbler ‘ brder Taker ‘1 n|- price
| | | | | - castein
n n n N - change
m m m m N ’—1 : [7]
Material Chute
- name - name 11 Menu ltem
- quantity -quantity [|- price - balance - balance
1| 1
[[[[[n |2 [8]
‘Invemory ‘ ‘Preparation ‘ lAssemny ‘ Order Taking

- cash limit
- cash balance

&l

‘Paid Order ‘ ‘Unpaid Order ‘

\] | [10]

Figure 7. Generated class diagram of the
whole restaurant system.

(11]

engineer to generate the design diagrams for two views of
the software system using common-practice modeling.

We compared the constructed Entity Relationship dia-
gram in Figure 5 with the similar diagram generated for the
same restaurant system by a software engineer. In this comt*®
parison 6 out of 8 entities for the order taking component
were the same in both diagrams which indicates a promis-;4
ing result. The proposed technique provides a disciplined
and structured approach to requirement-to-design transfo 15
mation process within the knowledge engineering field. The
proposed scenario schema provides a clear understanding
of the major building blocks of the software system’s func- [16]
tional entities and their relationships. The populated ob-
jectbase serves both as a data source during the design dia-
gram construction and as a valuable electronic asset of delt
sign knowledge to be analyzed, augmented, and used during

[12]

the maintenance phase of the software system. Specifically,
the objectbase can be mined to extract more general design
decisions that is not feasible by a human-based analysis.

I References

A. Anton and C. Potts. Representational framework f@rsgios of
system use. IRequirements Engineeringolume 3, pages 219-241,
1998.

L. Chung and K. Cooper. A kmvadedge-based cots-aware require-
ments engineering approach. $EKE '02: Proceedings of the 14th
international conference on Software engineering and kedge en-

gineering pages 175-182, New York, NY, USA, 2002. ACM Press.

C.Potts. Scenic: A strategy for inquiry-driven requirents determi-
nation. InProc. RE'99: International Symposium on Requirements
Engineering Limerick, Ireland, June, 1999.

C. Damas, B. Lambeau, and P. Dupont. Generating anmbtae
havior models from end-user scenariokEEE Trans. Softw. Eng.
31(12):1056-1073, 2005.

R. Darimont, P. Massonet, and A. Van Lamsweerde. KAOSEAR
vironment for Goal-Driven Requirements Engineeririg.Proceed-
ings of the ICSE’'98pages 1-2, 1998.

J. Desharnais, R. Khedri, and A. Mili. Representatioalidation
and integration of scenarios using tabular expressialwirnal of
Formal Methods in Software Development. Special issue loulda
expressions2002.

J. C. S. do Prado Leite, G. D. S. Hadad, J. H. Doorn, and G. N.
Kaplan. A scenario construction proceBequirements Engineering
5(1):38-61, 2000.

Haumer, P. Pohl, and K. Weidenhaupt. Requirementstation and
validation with real world scenes. IEEE Transactions on Software
Engineering 24pages 1036-1054, 1998.

M. Jarke, T. X. Bui, and J. M. Carroll. Scenario managemen
interdisciplinary approachRequir. Eng.3(3/4):155-173, 1998.

E. Nasr, L. McDermid, and G. Bernat. Eliciting and siigicg re-

quirements with use cases for embedded systémBroceedings of
the 7th International Workshop on Object-Oriented ReatdiDe-
pendable Systems (WORDS'Bages 350-357, January 2002.

B. A. Nuseibeh and S. M. Easterbrook. Requirementsreaging:
Aroadmap.In A. C. W. Finkelstein (ed) "The Future of Software En-
gineering ". (Companion volume to the proceedings of theHDS),
2000.

J. Ralyte. Reusing scenario based approaches in ezgeitt engi-
neering methods: Crews method base REP’99 pages 305-309,
1999.

] A. Sutcliffe. Scenario-based requirements engimegerin Proceed-

ings of the International Conference on Requirements Eggging
(RE’03), pages 320- 329, 2003.

] A. G. Sutcliffe. Scenario-based requirements analy®equirements

Engineering Journal3(1), 1998.

Y. E. Tsai, H. C. Jiau, and K.-F. Ssu. Scenario architect- a
methodology to build a global view of oo software system.
COMPSACpages 446-451, 2003.

W. Wang, S. Hufnagel, P. Hsia, and S. M. Yang. Scenarieedr
requirements analysis method. Proceedings of the Second Inter-
national Conference on Systems Integratipages 446—451, 1992.

In

7] H. H. Zhang and A. Ohnishi. A transformation method ofrsarios

from different viewpoints. IPAPSEC 2004pages 492-501, 2004.

