
Dynamic Analysis and Design Pattern Detection in Java Programs

Lei Hu and Kamran Sartipi
Dept. Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, Canada

{hu14, sartipi}@mcmaster.ca

Abstract

Identifying design patterns within an existing software
system can support understandability and reuse of the sys-
tem’s core functionality. In this context, incorporating be-
havioral features into the design pattern recovery would en-
hance the scalability of the process. The main advantage of
the new approach in this paper over the existing approaches
is incorporating dynamic analysis and feature localization
in source code. This allows us to perform a goal-driven
design pattern detection and focus ourselves on patterns
that implement specific software functionality, as opposed
to conducting a general pattern detection which is suscep-
tible to high complexity problem. Using a new pattern de-
scription language and a matching process we identify the
instances of these patterns within the obtained classes and
interactions. We use a two-phase matching process: i) an
approximate matching of class attributes generates a list of
candidate patterns; and ii) a structural matching of classes
identifies exact matched patterns. One target application
domain can be software product line which emphasizes on
reusing core software artifacts to construct a reference ar-
chitecture for several similar products. Finally, we present
the result of a case study.

KEYWORDS: Dynamic Analysis; Design Pattern De-
tection; Feature-specific Scenario; Pattern Matching; Soft-
ware Family; Data Mining.

1. Introduction

Software companies that satisfy the needs of a specific
market segment develop products that share common sets
of features [8]. These products are usually developed based
on a reference architecture which consists of common parts
and variable parts, where the variable parts can be modified
to satisfy the evolving requirements of the new products.
In this context, the evolutionary development of a software
system starts from identifying the important features con-
tained in similar products as well as identifying the reusable
components based on the reference architecture [7].

In this paper, we propose a new approach based on a hy-
brid dynamic and static analysis to address the problem of
reusing existing system’s design patterns that correspondto
specific software behavior as the goals of the recovery pro-
cess. In this context, design patterns (i.e., common solutions
to recurring design problems [11]) can assist a software en-
gineer in comprehending and reusing design decisions and
solutions adopted by the original software designers. Con-
sequently, these patterns can be used in developing a family
of similar systems that share the same core features.

The proposed framework identifies the existing design
patterns in the key software features through two major
parts:dynamic analysisandpattern detection. In dynamic
analysis, we identify a group of key features of the subject
system and generate a set of relevant task scenarios for each
feature, namely feature-specific scenario set. Through sce-
nario execution, pattern mining, and concept lattice analy-
sis we obtain the classes that contribute in generating those
features without any prior knowledge about the system. The
obtained classes will form a search space to conduct the pat-
tern detection process, where the design patterns are spec-
ified using a new pattern description language (PDL) that
drives the pattern matching process. A pattern repository
holds the specification of a number of design patterns. The
pattern matching process recovers the instances of the de-
sign patterns in the repository in two phases: i) an approx-
imate matching process generates a list of potential pattern
instances for each target pattern, by comparing the number
of class attributes in the search space; and ii) a structural
matching compares the complete class structure of the tar-
get pattern against the structure of the candidate instance
pattern.

In order to extract the core functionality of the existing
systems the software solution providers need a set of diverse
reverse engineering tools to be used for different projects
and at different application domains [6]. The approach pro-
posed in this paper contributes in such problem domain by
the followings:

i) mapping software behavior to source code as a means
to identify core classes that implement the key features
of a software system; hence providing a reduced search

1



G
ro

up
 o

f c
la

ss
es

For each common feature,

scenarios for Subject System

generate a set of feature−specific

Elicit common features

from existing systems

Common
features

Obtain inter−class

relations by parsing

Subject System

Pattern
Repository

Approximate matching using
class relation cardinality

Structural matching

using iner−class relations

Source class

clusters

Generate execution patterns

from the collection of traces

obtained by running scenarios 

Collect group of clases that 

implement specific features

System n

System 1 System 2

Subject
System

Group of 

scenario sets

matrices

Relation

Target
pattern

Pattern instances

pattern
Target

patterns
Execution

Figure 1. The proposed framework for dy-
namic analysis and design pattern recovery.

space for design pattern recovery; and
ii) presenting a novel two-phase search technique and a

pattern definition language to perform design pattern
recovery.

2. Related work
In this section, we discuss relevant approaches in dy-

namic analysis and design pattern detection to our work.
In dynamic analysis of software systems, El-Ramly et

al. [10] applied a sequential pattern mining technique to
identify interaction patterns between graphical user inter-
face components. Zaidman et al. [16] applied a web-mining
technique on program dynamic call graphs, where nodes
represent classes and edges represent method invocation.
Eisenbarth et al. [9] proposed a formal concept lattice anal-
ysis to locate computational units that implement a certain
feature of the software system. In contrast to the above tech-
niques, our approach exploits a novel analysis technique to
handle large sizes of the execution traces, and allows an in-
tuitive and promising process of feature to component allo-
cation.

We classify approaches to design pattern recovery (focus
of this paper) into two major categories, as follows.

Structure-based pattern detection. In this category,
the detection process identifies pattern instances that have

the same pattern class structure as a target pattern. Nija
Shi et al. [14] propose an approach to discover the GoF
patterns from Java source code based on data-flow analy-
sis on abstract syntax tree in terms of basic blocks. Lucia
et al. [12] propose a two-phase approach to recover struc-
tural design patterns, where in the first phase the number
of candidate patterns are reduced through analysis of class
diagram structure, and in the second phase the real patterns
are identified by user inspection.

Matrix-based pattern detection. In this category, the
approaches store the inter-class relations in the software
system as well as the target design patterns into different
matrices. Thus, the pattern matching process is accom-
plished by matrix matching. Nikolaos et al. [15] present
an automatic approach which uses a similarity score algo-
rithm to detect design patterns. The design pattern detection
is accomplished by calculating the similarity score between
the matrices of system and those of target design patterns.

3. Proposed framework

Figure 1 illustrates the proposed approach for design pat-
tern recovery. The framework consist ofdynamic analysis
to assign system features onto a set of system classes; and
pattern detectionto locate the instances of individual pat-
terns in the software system, by comparing the target pat-
terns in the pattern repository with software’s class struc-
ture.

Dynamic analysis. The proposed dynamic analysis op-
erates on the run-time execution traces of a set of subject
features to locate the corresponding low-level system com-
ponents that implement each feature. This process consists
of the following steps: i) feature-specific scenario set gener-
ation; ii) execution traces generation; iii) execution pattern
extraction from execution traces; and iv) execution pattern
analysis.

Pattern detection. The proposed design pattern detec-
tion process consists of two phasesapproximate match-
ing andstructural matching. In the approximate matching
phase, through identifying the eligible candidates for the
main-seed class of the target design pattern, we reduce the
search space for a target design pattern to a list of source-
class clusters, each of which contains a candidate main-
seed class. In the structural matching phase, we identify
the structurally matched design pattern instances within the
list of source-class clusters. The detail description of these
two phases are discussed in Sections 4 and 5.

4. Dynamic analysis

We propose a dynamic analysis technique to locate
the source code implementation of key features in object-
oriented systems, which is an enhancement of the previous



work presented in [13]. In the remaining of this section we
will give a description for the process of dynamic analysis.

4.1. Execution pattern extraction
Scenario selection. According to the knowledge about

the application domain, available documents, and user’s
guide of the subject system, we generate a set of relevant
task scenarios where all scenarios share a specific software
feature. We call this set of scenarios as feature-specific sce-
nario set.

Execution trace generation. In this step, we use Eclipse
Test and Performance Tools Platform (TPTP) [2] to instru-
ment and collect execution information from the software
system. By running scenarios of the feature-specific sce-
nario set on the instrumented software system, we obtain the
execution traces of each scenario in the form of entry/exit
listings of the object invocations.

Execution pattern generation. By applying a sequen-
tial pattern mining algorithm on the execution traces of the
specified feature, we can obtain the execution patterns of
the feature. Here we use a modified version of the sequen-
tial pattern mining algorithm by Agrawal [4].

4.2. Execution pattern analysis

After obtaining the execution patterns of several specific
features, we use concept lattice analysis to cluster the group
of classes in the execution patterns that exclusively corre-
spond to each specific feature; as well as the class clusters
that are common to every scenario set. In this context, the
clusters of common classes appear in the upper region of the
lattice, and the clusters of feature-specific classes appear at
nodes in the lower region of the lattice. Thus, a mapping
between the software feature and its implementation is ob-
tained at the bottom of concept lattice.

5. Design pattern detection

To avoid the combinatorial explosion in pattern detec-
tion process, we present a two-phase and semi-automated
design pattern detection process where each design pattern
is populated around a main-seed class.

5.1. Pattern description

Formally, a design patternp can be represented as
a tuple < C,R >, whereC is a set ofpattern-classes
{c1, ..., ck} andR is a set ofinter-class relationsamong
these pattern-classes. For two pattern-classesci andcj in
C, ShortestPath(ci, cj) returns the minimum number of
inter-class relations traversed fromci to reachcj , regardless
of the type of the inter-class relations [5]. TheDegreeof a
pattern-classci in C, denoted asdeg(ci), is the number of
the direct inter-class relations betweenci and all the other

MainSeedClass

Depth1−SuperClass1

Depth1−AssoClass

Depth2−SubClass1 Depth1−SubClass1 Depth1−SubClass2

1 Begin-PDL

2 Pattern : TargetPattern

3 Main-seed class : MainSeedClass

4 Depth1 :

5 Inherit From :

6 Depth1-SuperClass1

7 Inherited By :

8 Depth1-SubClass1;

9 Depth1-SubClass2

10 in Association :

11 Depth1-AssoClass

12 Depth2 :

13 Seed-Depth1: Depth1-AssoClass

14 Inherited By :

15 Depth2-SubClass1

16 AbstractClasses :

17 Depth1-SuperClass1

18 End-Pattern

19 End-PDL

Figure 2. Class diagram and PDL description
of a target pattern.

pattern-classes in the design patternp.

Main-seed class. We observe that for each design pat-
tern presented in [11], there exists at least one pattern-class
which can reach any other pattern-classes in the design pat-
tern within a shortest path value 2. We refer to this kind
of pattern-class aspotential main-seed class, whose formal
definition is given below.

Potential main-seed class. In a design patternp = 〈C,R〉,
a potential main-seed class, denoted ascpms, is a
pattern-classcpms ∈ C such that ∀ci ∈ C •
ShortestPath(cpms, ci) ≤ 2. Cpms is referred to the
set of all the potential main-seed classes in the design
patternp.

We propose a Pattern Description Language (PDL) to de-
scribe a generic pattern. PDL provides a convenient way to
describe a design pattern in a precise way and allows the
user to define any other pattern they desire to discover. Fig-
ure 2 presents the class diagram of a target pattern and its
corresponding PDL description.



5.2. Pattern detection

The pattern detection consists of a two-step matching
process, as:approximate matchingto generate a ranked
list of eligible candidate instance patterns; andstructural
matching to identify the structurally matched instance
patterns within the ranked list of instances.

Approximate matching. In approximate matching, the
main goal is to reduce the search space to a number of in-
stance patterns that are sufficiently close to the target pat-
tern. In this context, we specify a set of attributes for the
main-seed of the patterns (both target pattern and instance
patterns) whose values are used to compare these two pat-
terns. Hence, we can rank eligible instance patterns in the
search space and generate a short list of approximately sim-
ilar instance patterns to the target pattern. The main-seedat-
tributes include the number ofInherit From, InheritedBy,
AssociationandAbstractrelations.

As shown in Figure 2, the main-seed class
”MainSeedClass” possesses oneInherit From rela-
tion, one Association relation, and two InheritedBy
relations. Considering a search space as a set of classes
SP = {c1, c2, ..., cn}, for each classci ∈ SP we define
an attribute vectorAttr(ci) = [a1, ..., ak] with cardinality
k. Given the main-seedsct of the target pattern andci of
the instance pattern, the approximate similarity function
simapx is defined as:

simapx(Attr(ci), Attr(ct)) =

{

∆(Attr(ci), Attr(ct)) Attr(ci) ≥ Attr(ct)
0 Else

∆(Attr(ci), Attr(ct)) =

1 −
P

k
j=1

(Attrj(ci)−Attrj(ct))
P

k
j=1

Attrj(ci)

whereAttr(ci) ≥ Attr(ct) means that the value of each
element in the attribute vectorAttr(ci) is greater than or
equal to that of attribute vectorAttr(ct). In this context,
functionsimapx computes the approximate similarity value
between the target pattern (represented by the main-seed
classct) and the candidate instance pattern (represented by
main-seed classci).

Algorithm “ApproximateMatching” receives the search
space, class relation matrices, target pattern, and a cut-off
threshold similarity value, and returns the list of eligible
candidate instance patterns. The algorithm utilizes the
function “ComputeAttrV alue()” to compute the attribute
values of a main-seed using the class relation matrices; and
function “GeneratePattern()” to compose an instance
pattern with two level classes using every classci (in
different iterations) from the search space.

Systems Version # Classes #Files #LOC
JHotDraw 5.1 172 144 8419
JHotDraw 6.0b1 405 289 21091
JHotDraw 7.0.7 331 309 32122

Table 1. Statistics for the subject systems.

Structural matching. Structural matching algorithm
deals with the identification of all the instances of the target
pattern within a candidate instance pattern1 obtained from
the aforementioned approximate matching. The algorithm
receives a candidate instance pattern, target pattern, andthe
class relation matrices. It returns one or more identified in-
stance patterns within the candidate instance pattern. The
algorithm utilizes the functionsGetDepth1Classes() and
GetDept2Classes() to retrieve the corresponding depth1
and depth2 classes from the PDL representation of the tar-
get pattern.

After a pattern instance is detected, a further user-
assisted verification has to be performed to check whether
the detected pattern is actually implemented within the sub-
ject software system or not. This verification is performed
through browsing the source code and consulting with the
existing design documents.

6. Case study

In this section, we discuss the results of applying the pro-
posed approach on a Java open-source project,JHotDraw
[1]. JHotDraw is a Java GUI framework which is used to
draw two-dimensional graphics and it contains many in-
stances of design patterns in its implementation.

Based on discussion in Section 1, we apply our proposed
approach on three versions of JHotDraw, ver5.1, ver6.0b1
and ver7.0.7 to extract reusable software artifacts. The ex-
periments are performed on a Windows XP professional
edition running on a PC with a 1.5GHZ centrino processor,
512M bytes memory and 1G bytes virtual memory.

Table 1 presents several system statistics from three ver-
sions of JHotDraw systems in the case study. Because of
space limitation, the results of execution trace extraction
and execution pattern mining for 10 features of the three
versions of JHotDraw systems are not presented in this pa-
per, however similar experimentation can be found in our
previous work [13]. In a further step, we supply the result-
ing execution patterns obtained from the sequential pattern
mining to a concept lattice generation tool, ConExp [3]. Fi-
nally, we generate a search space by collecting all classes of
the feature-specific concepts and augmenting this space by
adding two levels of immediately related classes.

1Note that a target pattern usually has fewer classes than thecandidate
instance pattern, hence it may match with more than one sub-pattern in-
stances within the candidate pattern.



Rectangle Round Rectangle Ellipse Polygon Line Move Delete Group LineConnection Text
Adapter 0/0/0 1/1/1 0/0/0 2/1/1 1/1/1 0/0/0 0/1/0 1/0/1 2/2/2 0/1/0
Observer 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 1/1/0 0/0/0 2/2/0 0/0/0 0/0/0
Proxy 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
Decorator 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
Strategy & State 1/1/1 1/1/1 1/1/1 1/1/0 1/1/0 1/1/1 1/2/0 1/0/1 5/4/3 1/2/1

Legend: A / B / C
A: data of JHotDraw 5.1, B: data of JHotDraw 6.0b1, C: data of JHotDraw 7.0.7

Table 2. Results of mapping between target patterns and 10 fe atures in three versions of JHotDraw.

In the following phase of the experimental study, we ap-
ply pattern detection algorithms “ApproximateMatching()”
and “StructuralMatching()” (discussed in Section 5) on the
search space to detect all the pattern instances of the tar-
get patterns in the pattern repository. We describe structural
information of each pattern using the proposed pattern def-
inition language (PDL) and store it into the pattern reposi-
tory. Currently, our pattern repository contains the follow-
ing patterns:Adapter, Proxy, Observer, Decorator, Bridge
andStrategy & State. To filter out the false-positive pat-
terns in the detected pattern instances, we perform a manual
verification on these resulting pattern instances by inspect-
ing the corresponding source code. To correlate a detected
pattern instance to a software feature, we check the over-
lap between the highly related classes of the feature (ob-
tained from concept lattice) with the participating classes
of the pattern instance. If there is an overlap, it means that
there exists a relation between the feature and the pattern in-
stance. Table 2 presents the correlation of detected pattern
instances to the 10 features of the three versions of JHot-
Draw systems. The value in each entry of the table repre-
sents the number of the pattern instances that are correlated
with the corresponding feature.

7. Conclusions

In this paper, we presented a two-phase approach to iden-
tify individual design patterns within a subject software sys-
tem as a means to assist the construction of a reference ar-
chitecture for a family of software systems, or for different
versions of the same system. The main advantage of our
approach over the existing approaches is incorporating dy-
namic analysis and feature localization in source code. This
allows us to perform a goal-driven design pattern detection
and focus ourselves on design patterns that implement spe-
cific software functionality as opposed to conducting a gen-
eral pattern detection which is susceptible to high complex-
ity problem. We have successfully experimented with JHot-
Draw system which is considered as a benchmark for design
pattern recovery.

References

[1] Jhotdraw start page. http://www.jhotdraw.org, 2006.

[2] The eclipse test and performance tools platform, 2006.
http://www.eclipse.org/tptp.

[3] Formal concept analysis toolkit version 1.0.1.
http://sourceforge.net/projects/conexp.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE
’95: Proceedings of the Eleventh International Conferenceon Data
Engineering, pages 3–14, 1995. IEEE Computer Society.

[5] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recov-
ery in object-oriented software. InIWPC ’98, pages 153–160. IEEE
Computer Society Press, June 1998.

[6] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J.-M. DeBaud. Pulse: a methodology to develop soft-
ware product lines. InProceedings of SSR ’99, pages 122–131, New
York, NY, USA, 1999. ACM Press.

[7] J. Bayer, J.-F. Girard, M. Wurthner, J.-M. DeBaud, and M.Apel.
Transitioning legacy assets to a product line architecture. In Proceed-
ings of ESEC/FSE-7, pages 446–463, London, UK, 1999. Springer-
Verlag.

[8] P. Clements and L. Northrop. A framework for
software product line practice. Technical report,
www.sei.cmu.edu/productlines/framework.html, 2004.

[9] T. Eisenbarth, R. Koschke, and D. Simon. Derivation of feature com-
ponent maps by means of concept analysis. InProceedings of IEEE
CSMR’01, pages 176–179, March 2001.

[10] M. El-Ramly, E. Stroulia, and P. Sorenson. Recovering software re-
quirements from system-user interaction traces. InSEKE ’02: Pro-
ceedings of the 14th international conference on Software engineer-
ing and knowledge engineering, pages 447–454, New York, NY,
USA, 2002. ACM Press.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design pat-
terns: elements of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[12] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi. A two phase
approach to design pattern recovery. Inin Proceedings of CSMR07,
pages 297–306, Amsterdam, Netherlands, 2007. IEEE CS Press.

[13] H. Safyallah and K. Sartipi. Dynamic analysis of software sys-
tems using execution pattern mining. InICPC ’06: Proceedings of
the 14th IEEE International Conference on Program Comprehension
(ICPC’06), pages 84–88, Athens, Greece, 2006. IEEE Computer So-
ciety.

[14] N. Shi and R. A. Olsson. Reverse engineering of design patterns from
java source code. InASE ’06, pages 123–134, 2006. IEEE Computer
Society.

[15] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis.
Design pattern detection using similarity scoring. InSoftware Engi-
neering, pages 896–909. IEEE Transactions on, Nov. 2006.

[16] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying
webmining techniques to execution traces to support the program
comprehension process. InCSMR ’05: Proceedings of the Ninth
European Conference on Software Maintenance and Reengineering
(CSMR’05), pages 134–142, 2005. IEEE Computer Society.


