

Book title:

Managing Corporate Information Systems Evolution and Maintenance

Chapter title:

Software Architecture Analysis and Reconstruction

Kamran Sartipi, PhD

Assistant Professor

Department of Computing and Software, McMaster University

Hamilton, ON, L8S 4K1, Canada

Tel: 1-905-525-9140 ext. 26346

Fax: 1-905-524-0340

Email: sartipi@mcmaster.ca

&

Kostas Kontogiannis, PhD

Associate Professor

Department of Electrical & Computer Engineering

University of Waterloo

Waterloo, ON, N2L 3G1, Canada

Tel: 1-519-888-4567 (ext. 2840)

Fax: 1-519-746-3077

Email: kostas@swen.uwaterloo.ca

mailto:sartipi@mcmaster.ca

Software Architecture Analysis and Reconstruction

ABSTRACT

This chapter addresses the research challenges in the area of software architecture

reconstruction and discusses the state-of-the-art and practice solutions to these challenges. Software

architecture analysis and reconstruction is an area within the software architecture domain that

refers to the techniques and tools for processing and recovering high-level information from a

lower-level software system representation such as the source code. The importance of architecture

analysis and reconstruction of a large and complex software system stems from the need to perform

continuous maintenance activities to keep a mission critical system operational. Such activities

include, adopting a new implementation technology, error correction, feature enhancement, and

migration to a new platform, where the architectural reconstruction constitutes the major part of

these activities. The authors hope that the discussions of this chapter expose the reader to a

systematic approach to the important issues, alternative solutions, and future research, in the field

of software architecture analysis and reconstruction.

KEYWORDS: Architectural features; Architecture recovery; Software Architecture;

Architectural views; Data Model; High-level model, Query Language; Data Mining; Data

Processing Software; Extraction; Pattern matching; Clustering; Concept lattice; Visualization;

Evaluation.

 1

INTRODUCTION

For several decades, we have been witnessing the importance and influence of large and

complex software systems into various aspects of our lives. In recent years the engineers have been

confronted with the problem of legacy systems which are large, mission critical, and complex

software systems that have been operational and modified over a number of years. These old

systems are difficult and costly to maintain, evolve, or integrate with other systems since they

usually lack any updated design documents and possess complex structures. The average life-time

of legacy software systems is between 10 to 15 years (Wallmuller, 1994) and the replacement of

these systems is very expensive, therefore these systems are subject to re-designing and re-

engineering.

Software architecture analysis and reconstruction encompasses various methods and

supporting tools for extracting high-level information from some lower level representation of a

software system such as the source code. Architectural reconstruction is a reverse-engineering

activity that focuses on the architectural design aspects. In all of the following software

maintenance activities, the software analysis and architectural reconstruction are the major parts of

the operations on legacy software systems. Adopting a new technology such as, object-orientation,

component-base programming, or network-centric re-engineering requires changes in the design of

the system, hence the design of the system must be well understood before such activities

commence. Error-correction and feature enhancement operations invalidate the design document of

the system, therefore the design document must be updated. Migrating a legacy system to a new

platform such as Windows or Unix operating system requires functional and behavior description

 2

of the system's components, which necessitates understanding the components’ functionality and

behavior.

The discussions in this chapter are geared towards two main objectives.

First, to cover the definitions and the major issues in the field of software architecture

reconstruction and the challenges that researchers in this field encounter. These issues include:

specific views of the system to extract; representation models for the software system entities and

relations; architecture reconstruction techniques; tractability of the reconstruction process; and

evaluation methods for the result of the reconstruction process. Second, to address the possible

solutions to these issues as they are presented by the state-of-the-art techniques in this field. These

techniques include: clustering techniques, concept-lattice analysis, query-based techniques, and

system composition and visualization. Finally, the proposed future trends in this chapter will serve

as a starting point for further research in this field.

SOFTWARE ARCHITECTURE RECONSTRUCTION

 The following observations form the basis for a definition for software architecture

reconstruction. Despite several attempts for automating the architectural reconstruction process it is

generally accepted that a fully-automated technique is not feasible. It is rather impossible to define

the architecture of a large system at once, hence, the architectural reconstruction should be an

incremental process. Software systems usually consist of architectural patterns in their design

which are the basis for the reconstruction process. Most reconstruction processes focus on the

structural properties of a system, ignoring the high-level behavior of the system. Finally, the role of

the user is increasingly important in incorporating the domain knowledge and system documents

 3

into the reconstruction process. Based on the above discussion, in (Sartipi, 2003) the software

architecture reconstruction is defined as:

 The whole

the extraction

source model

user-assisted

discussions in

pattern are de

• Softwa

reflect

constr

• Comp

variab

throug

• Conne

(e.g., f

compo

devising a tractable process, required techniques, and supporting tools

for interactively and incrementally extracting a system's high-level

structure or behavior using domain and system knowledge.
 software reconstruction process is divided into two phases. In the first phase, namely

 phase, a tool automatically builds a more abstract system representation, i.e., the

, out of the program representation. In the second phase, namely the analysis phase, a

process constructs a high-level view of the system from the source model. For the

 this chapter, the software architecture, component, connector, and architectural

fined as follows:

re architecture: a partition of the software system entities into components that

s the system characteristics and domain knowledge, and meets the structural

aints defined by a given architectural pattern.

onent: a named grouping of system entities (e.g., files, functions, datatypes, and

les) according to some architectural properties, that interacts with other groups

h using or providing the system services.

ctor: a relation abstraction between two components using a group of system entities

iles, functions, datatypes, and variables) that allow the interaction between two

nents.

4

• Architectural pattern: a set of fully or partially specified components and a number of (size

and type) constrained connectors among the components that collectively represent the core

functionalities and interactions within the software system.

Issues in Software Architecture Reconstruction

This section provides a brief overview on various issues that an approach to software

architecture reconstruction must address. A detailed discussion on each issue will be presented in a

corresponding section.

What Views of the System to Recover

The views of a software system are the result of applying separation of concerns on a

development or reverse-engineering process of the software in order to classify the related

knowledge about that process into more understandable and manageable forms. Unfortunately,

reverse engineering is much more difficult to achieve than forward engineering. Recovering the

functionality of a large and poorly documented legacy system is a non-trivial, if not impossible,

task. Section “Architectural views” introduces a set of views of a software that is suitable for

reconstruction process.

How to Represent the Software System

In software architecture reconstruction an appropriate representation of the software system

is important in both extracting the desired properties from the software, and providing support for

programming language independent analysis. In general, the preserved information and the level of

abstraction for analysis are trade-offs that need to be considered at this stage. In section “Software

 5

system representation” the methods for representing low-level software system using the notion of

domain model are discussed.

What Reconstruction Technique to Use

In a nutshell, approaches to architectural reconstruction can be classified as clustering-based

techniques and pattern-based techniques. The clustering-based techniques generate architectural

components by gradually grouping the related system entities using a similarity measure. The

pattern-based approaches first compose a high-level mental model of the system architecture (i.e.,

the conceptual architecture or architectural pattern) using a modeling means, and a search engine

identifies the pattern in the software representation. The clustering category and pattern-based

category are further divided into several techniques each with particular advantages and

disadvantages that make the basis for the user to adopt a technique. In section “Techniques for

architectural reconstruction” different techniques will be presented.

How to Make the Reconstruction Process Tractable

Searching for a particular property or groups of related properties in a large database is a

computationally intensive process. In some cases, the search algorithms are intractable for a large

number of inputs, for example finding a subgraph pattern in a graph representation of a large

system. Efficient techniques and heuristics are essential in managing the inherent complexity of

architectural reconstruction tasks. In section “Scalability of the reconstruction process” several

heuristics to deal with scalability will be discussed.

 6

How to Involve the User in Reconstruction

The role of the user, as an integral part of an architectural reconstruction process, is

important for directing the reconstruction process. In fact, the ambitious goal of fully automating

the reconstruction process is no longer supported by the research community. Instead, a cooperative

environment of human and tool is the most promising solution for relaxing the reconstruction

complexity. This trend necessitates that the domain knowledge and system documents be

incorporated in the reconstruction process by the user inspection. The section “User involvement in

the reconstruction process” addresses the importance of user in this process.

How to Validate the Recovered Architecture

Similar to validation testing in forward engineering, a reverse engineering process is also

expected to generate results that can be validated against the actual or intended architecture of the

software system. However, the validation of a recovered architecture is still in its early stages and

requires more attention from the research community. In section “Architectural evaluation

techniques” the current techniques for assessing the result of the reconstruction process are

discussed.

In the rest of this chapter, the detailed discussions on the above issues along with the

proposed solutions by the different techniques are presented.

ARCHITECTURAL VIEWS

The significance of software architecture views has been widely addressed in the literature

(Zachman, 1987; Kruchten, 1995; Soni et al., 1995; Poulin, 1996). In a broad sense, views are the

 7

result of applying separation of concerns on a development or reverse engineering process in order

to classify the related knowledge about that process into more understandable and manageable

forms. The choice of an appropriate set of views is a common concern both in software

development and reconstruction process. The proposed sets of views for developing or specifying a

system consists of: data, function, and network (Zachman, 1987); function, process, development,

and physical (Kruchten, 1995); conceptual, module-interconnection, execution, and code (Soni et

al., 1995). In general, it is ideal to recover the same set of views of a system that is also needed for

its development. Unfortunately, reverse engineering is much more difficult than forward

engineering.

Figure 1 illustrates a categorization of essential features used for describing software

architecture and a set of three architectural views, namely structure, behavior and environment that

are suitable for reconstruction. The chosen views are orthogonal and carry most of the important

information that encompass the systems in different domains such as information, concurrent,

reactive, distributed, and command and control. A brief description of the different views follows.

Structure View

The structural view covers all building blocks and interconnections (glues) that statically

describe the architecture of a software system.

The structural view is the most appropriate architectural view to be recovered and a number

of approaches and tools already exist (Finnigan et al.,1997; Rigi, URL). The structural view

consists of two parts:

a) The static features are the property of the source code, hence, can be extracted by static

analyzing the source program. An entity refers to a basic block of code that constitutes in building a

 8

Figure 1: Classification of a software system features into three views that are

intended for architectural reconstruction purposes. The scope of the architecture

reconstruction techniques discussed in this chapter has been shown inside an oval.

software's structure. A connectivity refers to an interconnection between two entities. A scope

refers to the maximum range that a definition is effective. Scope is further divided into visibility

such as local and global; and encapsulation such as public and private access privileges.

 9

b) The snapshot features change over time, hence, represent dynamic aspects of a program.

These features can be detected statically by interrupting a running program and registering the

program's context and state. Spawned concurrent processes, class instances (objects), etc. are

typical information to be discovered.

Behavioral View

The behavioral view of a system refers to the services that a system provides to its

environment through its interactions with the environment.

The behavioral view can be expressed from two orthogonal aspects of the program

properties such as: i) event traces (sequences of function invocations using the profiling techniques)

(Bojic & Velasevic, 2000; El-Ramly, Stroulia, & Sorenson, 2002; Eisenbarth, Koschke, & Simon

2001) and Pre/Post-conditions (input/output constraints of a function or module) (Zaremski &

Wing, 1995); ii) temporal properties (concurrency issues) and functional properties (data

transformation characteristics) which are difficult to be analyzed and recovered.

Environment View

The environment view of a software system (application) refers to all supporting facilities,

including hardware and software, that encompass the system and enable it to operate and provide

its services to the environment.

The environment view consists of: platform, operating system, and devices, where the

operating system can be further subdivided.

Specifically, the features inside the oval in Figure 1 highlights the scope of the architecture

reconstruction techniques discussed in this chapter. The techniques pertinent to the recovery of

 10

different views of a system are significantly different in both the system representation and the

adopted reconstruction technique. Therefore, as an important design decision to make, the engineer

should restrict the scope of the reconstruction to a subset of the features in a view of the system.

For example, the highlighted area in Figure 1 except the features “Scoping, Message passing, and

Control coupling” indicates the scope of a pattern-based architectural reconstruction approach

presented in (Sartipi, 2003).

SOFTWARE SYSTEM REPRESENTATION

In software architecture reconstruction, an appropriate choice of a source model is central

in: recovering desired properties from a program; matching algorithm efficiency; and programming

language independence. In this section, the alternative models for representing the parsed software

system are introduced. Because of its expressiveness, the graph representation of a software system

has been adopted by most of the current approaches, however, different graph modeling techniques

can be used.

Domain Model

In a software system, entities and their interactions both at design level and source-code

level can be represented by various formalisms, including: entity relation diagrams, module

interconnection diagrams, structure charts, program dependency graphs, and abstract syntax graphs.

A domain model provides a schema for such a representation formalism and can be represented as a

class diagram. For example, the entity relation diagram of a system at the source-code level can be

extracted from the domain model of the corresponding programming language, by considering: i)

 11

Figure 2: The class diagram of a simplified domain model for a typical procedural

programming language such as C. The instantiation of the classes and their association links

during the parsing process generates an abstract syntax tree for the software system.

source code constructs as instantiations of domain model classes (i.e., file, function, statement,

expression, type-specifier, and variable); and ii) relationships between source code entities as

 12

instantiations of associations between domain model classes. The instantiation of the classes and

associations into objects and relationships is the result of parsing a software system according to

the corresponding grammar where an abstract syntax tree of the class objects and their links is

generated. Figure 2 illustrates a simplified class diagram of the domain model for a typical

procedural language. This model has been derived from a complete domain model for the C

language (RefineC98, 1998), and can be used as the basis to define a source model for the software

system.

Source Model Definition

The source model for an architecture reconstruction process is a database of entities and

relationships that is used by the analysis process in order to build a high-level view of the system,

i.e., software architecture. The source model is defined via a domain model that is derived from the

source-level domain model and defines the types of entities and relationships that are suitable for a

specific architecture-level analysis. The resulting domain model deletes the unnecessary details of

entities and relationships and hence it is sometimes called abstract domain model (Sartipi &

Kontogiannis, 2003), concept model (Chen, Nishimoto, & Ramamoorthy, 1990), or schema

(Finnigan et al., 1997). In such a domain model, the set of entity-types is a sub-set of entity-types in

the source-level domain model and each relation-type is an aggregation of one or more relation

types in the source-level domain model. The source models of four reconstruction environments are

discussed below.

The Alborz environment (Sartipi, 2001a) defines an “abstract domain model” in which the

types of entities are: source file, function, datatype (including aggregate and array types), and

global variables. Also, the types of relations are: use-F, use-T, use-V, cont-R, use-R, imp-R, and

 13

Source code entities Architectural entities

source-file “main.c” abstract-file Li

function “foo” abstract-function Fj

aggregate-type “bar” or

array-type “bar”

abstract-type Tk

global-variable “kam” abstract-variable Vm

Source code relations Architectural relations

function “foo” calls function “foobar” Fj use-F Fx

function “foo” passes, receives, or uses

aggregate-type / array-type “bar”
Fj use-T Tk

function “foo” references or updates

global-variable “kam”
Fj use-V Vm

source-file “main.c” defines function “foo”,

defines aggregate-type / array-type “bar”,

defines global-variable “kam”

Li cont-R Fj

Li cont-R Tk

Li cont-R Vm

one or more functions defined in source-file “main.c” call

function “foo”, or use aggregate-type / array-type “bar”, or

reference / update global-variable “kam”

Li use-R Fj

Li use-R Tk

Li use-R Vm

Figure 3: The relationships between the types of entities and relations in a procedural

language source code, such as C, with the types of entities and relationships at the

architectural level.

 14

exp-R. Figure 3 illustrates the correspondence between the types of entities and relations in the

source code (defined by the source-level domain model) and the types of entities and relationships

at the architectural level (defined by the abstract domain model in (Sartipi & Kontogiannis, 2003)).

This source model allows to analyze a software system at two levels of entity granularity, i.e., at

 module-level the lower grained entities such as functions, datatypes and variable are analyzed, and

at subsystem-level the higher grained entities such as files are analyzed.

 Now, we discuss how the source-level domain model in Figure 2 can be used to specify the

steps for extracting the entities that are related according to the aggregated relations in the abstract

domain model we defined above. As a simple example, we extract all the functions that are related

with function “foo” with the relation use-F which is in fact the simple relation call function. The

steps are as follows:

1. Get the sequence S of statements in function “foo”

2. For each statement s in S that is either: iteration, if-then-else, return, block, switch,

assignment, get all the expressions E in s.

3. Check each expression e in E and keep only those that are of type Function-call. The name

of the called function can be obtained from the “name” attribute of the function-call

expression.

In the case of an aggregate abstract relation such as use-V, each simple relation such as

reading from the global variable and writing to the global variable must be extracted separately, and

consequently their relations be aggregated.

The CIA (C Information Abstraction System) (Chen et al., 1990) defines a concept model

using an attributed entity relation diagram where the entities represent “file, function, type, global

 15

variable, and macro” and the relations represent the “reference” relation. The attributes for an entity

define the name and location properties of the entity. In this model a “reference” relation is defined

between two entities A and B if the definition of A refers to B such that A can not be compiled and

executed without the definition of B. Therefore, in this model the relation “reference” denotes to

either of the relations in the above abstract domain model.

The PBS (Portable BookShelf) (Finnigan et al., 1997) uses a complex and general schema

for modeling information in the repository using generalization and aggregation in an object class

diagram. This general schema has been derived from a conceptual modeling language originally

defined in Telos (Mylopoulos, Borgida, Jarke, & Koubarakis, 1990). The general schema allows to

define customized schema to model the information for different analysis purposes.

Due to their expressiveness and mathematical foundation, graphs are commonly used as the

representation model for the software systems. All the above schemas or domain models define the

types for system entities and their relationships which allow to represent the software system as a

typed, attributed, directed graph. In this connection, the research on GXL (Graph eXchange

Language) (Holt et al., 2000) is aimed at providing a standard exchange format for graph-based

tools. The design of GXL is based on XML (Extensible Mark-up Language) (URL, XML) which is

a simple and flexible text format that was originally designed to meet the challenges of large-scale

electronic publishing. The domain model for the GXL is defined using the DTD (Document Type

Definition) of XML.

 16

 TECHNIQUES FOR ARCHITECTURAL RECONSTRUCTION

In the following sections, two broad categories of the software architecture reconstruction

techniques are discussed. In the first category, namely clustering, a technique generates

architectural components by gradual grouping the related system entities. The clustering category

comprise of: automatic/semiautomatic clustering techniques that collect the related parts of a

software system into cohesive components using a proximity metric (Wiggerts, 1997; Lakhotia,

1997; Tzerpos & Holt, 1998); concept lattice techniques that aggregate the groups of maximally

related entities, arranged in the neighboring nodes of a concept lattice (Siff & Reps, 1999; Lindig &

Snelting, 1997; Deursen & Kuipers, 1999); composition and visualization techniques that recover

the containment-hierarchy of the system components using visualization and graph manipulation

methods (Muller et al., 1993; Finnigan et al., 1997); and data mining techniques that discover the

groups of entities that are related by association relation (Sartipi, Kontogiannis, & Mavaddat,

2000a; Miller & Gujarathi, 1999).

In the second category, namely pattern-based, a technique initiates by composing a high-

level view of the system architecture (also known as the conceptual architecture or architectural

pattern) using a modeling means, and then a search engine identifies the pattern in the software

representation. The pattern-based techniques comprise of: pattern matching techniques that model

the high-level view of the system using a pattern modeling means and use approximate matching

techniques to recover the pattern; compliance checking techniques that check the degree of

conformance between a pattern and source-code; and constraint checking techniques that identify

groups of entities that satisfy the constraints defined among them.

 17

Clustering Techniques

The cluster analysis is defined as the process of classifying entities into subsets that have

meaning in the context of a particular problem (Jain, 1988). The clustering techniques are designed

to extract groups of related entities. The choice of a technique affects the detected clusters, which

may or may not relate to the actual or intended structure of the system. These techniques provide

tractable means to identify cohesive system components.

 Requirements for a Clustering Technique

In this section, we discuss the requirements of clustering techniques for architectural

reconstruction, as these have been presented in the related literature. These include: i) type of

entities to be grouped; ii) similarity measure between two entities; and iii) clustering algorithm.

Wiggerts (Wiggerts, 1997), Anquetil (Anquetil & Lethbridge, 1999), and Tzerpos (Tzerpos & Holt

1998) have surveyed different aspects of clustering algorithms for software systems.

• Entities to be clustered. In clustering analysis, the granularity level of the selected source

code entities depends on the purpose of the analysis. For example, function, datatype, and

variable (lower-level of granularity) are usually used for clustering at the module level, and

file (higher-level of granularity) is used for clustering at the subsystem level. The

application of domain model in extracting a suitable source model for the architectural

reconstruction purpose was discussed earlier.

• Similarity measure. A similarity measure is defined so that two entities that are alike

would possess a higher similarity value than two entities that are not alike. Different

methods for similarity measure fall into two general categories. The first category is based

 18

on relationships between the entities (e.g., function call, or data use) where the similarity is

measured as a function of the number of static occurrences of such relationships. The

second category is based on shared properties (namely features) between two entities,

where the similarity is measured based on the number of shared features. Patel (Patel, Chu,

& Baxter, 1992) provides an interesting social relation analogy between “finding similar

entities to an entity” and “finding the friends of a person in a party”. Wiggerts provides a

summary of different categories namely association coefficients, correlation coefficients,

and probabilistic measures (Wiggerts, 1997). An evaluation of these similarity metrics can

be found in (Davey & Burd 2000). Based on the size ratio of different unions and weights of

the sets of shared features, a variety of association based similarity metrics have been

suggested (Everitt, 1993) such as Jaccard and matching coefficient.

• Clustering algorithms. Important clustering algorithms that apply to the field of software

reverse engineering can be categorized as: i) hierarchical algorithms, where each entity is

first placed in a separate cluster and then gradually the clusters are merged into larger and

larger clusters until all entities belong to a single cluster; ii) optimization algorithms, where

a partitioning of the whole system into clusters is considered and with iterative entity

relocation among the clusters the partition is improved towards an optimal partition; and iii)

graph-theoretic algorithms, where an entity relationship graph of the system is considered

and the algorithm searches to find subgraphs with special properties such as maximal

connected subgraphs or minimal spanning trees. A supervised clustering technique requires

guides from the user in different stages to perform the clustering, whereas, an un-supervised

clustering only relies on the similarity matrix consisting of the similarity of every pair of

 19

Figure 4: (a) Hierarchical clustering, where the cut-lines generate different number of

clusters. (b) Optimization clustering (partitioning), where the entities in an initial partition

are relocated among clusters based on some criteria until the partition is stable and no

relocation is performed any more.

entities (Jain, 1988). Figure 4 illustrates examples of hierarchical clustering and optimization

clustering (also called partitioning).

 Automatic and Semi-Automatic Clustering Techniques

A technique in this group (Sartipi & Kontogiannis, 2001; Koschke, 1999; Anquetil &

Lethbridge, 1999; Canfora, Czeranski, & Koschke, 2000; Davey & Burd, 2000; Mancoridis et al.,

1998; Hutchens & Basili, 1985; Kunz & Black, 1995) uses a similarity metric (e.g., association

coefficient, correlation coefficient, or probabilistic measures) which reflects a particular property

among the system entities, and a clustering algorithm (e.g., agglomerative, optimization, graph-

based, or construction) to partition the system into groups of related entities (Wiggerts, 1997).

 20

Lakhotia (Lakhotia, 1997) provides a unified framework that categorizes and compares the

different software clustering techniques. In (Mancoridis et al., 1998) a partitioning method is used

to partition a group of system files into a number of clusters. The method uses a hill-climbing

search to consider different alternatives based on neighboring partitions, where the initial partition

is randomly selected. In (Tzerpos & Holt, 2000), a number of system structural properties are used

to cluster the system files into a hierarchy of clusters. The method uses subgraph dominator nodes

to find subsystems of almost 20 members, and builds up the hierarchy of subsystems accordingly.

To simplify the computation, the interactions of more than a specific number (e.g., 20 links)

to/from a file are disregarded.

Concept Lattice Analysis

 The mathematical concept analysis was first introduced by Birkhoff in 1940 (Birkhoff,

1940). In this formalism, a binary relation between a set of “objects” and a set of “attribute-values”

is represented as a lattice. Recently, the application of concept analysis in reverse engineering has

been investigated (Siff & Reps, 1999; Lindig & Snelting, 1997; Deursen & Kuipers, 1999). In such

applications, a formal concept is a maximal collection of objects (i.e., system functions) sharing

maximal common attribute-values (i.e., called/used functions, datatypes, variables). A concept

lattice can be composed to provide significant insight into the structure of the relations between

objects and attribute-values such that each node of the lattice represents a concept.

The steps of using concept lattice for the modularization of a software system have been

presented in (Siff & Reps, 1999) as follows. First, a matrix of functions and their attribute-values is

built that is called a context table. Second, based on this matrix a concept lattice is constructed,

using a bottom-up iterative process. Finally, a collection of the concept partitions is identified,

 21

Figure 5: The application of concept lattice analysis in grouping the system entities into modules. The

dashed areas are two representations of the same group of entities, i.e., F1, F3, F5, F2, F7, T3.

where each partition is a group of disjoint sets of concepts, and the attribute-values in each set of

concepts have significant overlap. In this context, each partition corresponds to a potential

decomposition of the system into modules. Figure 5 illustrates the application of concept lattice

analysis in collecting a group of system entities that exist in neighboring concepts in a lattice. This

group of entities constitutes a high cohesive module.

However, even in medium software systems (+50 KLOC) the concept lattice may become

so complex that the visual characteristic of the lattice is obscured. In such cases, the researchers

seek automatic partitioning algorithms to assist the user in finding distinct clusters of highly related

concepts. Anquetil (Anquetil, 2000) addresses this problem and argues that concept lattice produces

much more information, i.e., concepts, than it was given as input (i.e., a set of entities describing

the software system), and hence he proposes a technique that only extracts the most interesting

concepts. Godin (Godin & Mili, 1993) proposes a solution to the overwhelming number of

concepts by pruning the concepts that do not introduce any attributes of their own, from the lattice

of concepts. The pruned concepts are considered as non-important concepts. In the resulting lattice,

each concept has at least one new attribute. Van Deursen (Deursen & Kuipers, 1999) proposes a

 22

technique to simplify the data set before extracting the concepts, e.g., by eliminating the programs

with a high number of fan-in or fan-out. This approach uses the concept lattice to extract

components in the term of classes of objects in the Cobol programs.

 Visualization Techniques

 The approaches in this group (Finnigan et al., 1997; Muller et al., 1993; Storey, Best, &

Michaud, 2001) are based on tool usage, domain knowledge, and visualization means, to perform

an iterative user-assisted clustering process. Such user-assisted techniques have been proven useful

in handling large systems (Finnigan et al., 1997).

In the PBS approach (Finnigan et al., 1997), the user defines a containment structure for a

hierarchy of subsystems which is derived from: developers, documentation, directory structure, and

naming conventions. The tool consequently reveals the relations between subsystems and represent

the system architecture as “landscapes” in HTML pages for the user's inspection and manipulation.

In the Rigi tool (Muller et al., 1993), the extracted facts in the form of RSF tuples are represented

as an entity-relation graph of attributed boxes and relationship links. Interactive facilities for graph

filtering and clustering operations to build and explore subsystem hierarchies are also provided.

SHriMP (Storey et al. 2001) is an information visualization and navigation system that

employs zooming features to provide insight into the structure of the system under analysis. The

fish-eye zooming feature allows the user to zoom on a particular piece of the software, while

preserving the context of information. The tool uses search algorithms that allows the user to find

and visualize the intended artifact in the system. The process is assisted by the user in order to

construct high-level views of a system by grouping the elements in a graph. Figure 6 illustrates a

 23

Figure 6: A structural view of a software system generated by the SHriMP software

visualization tool.

view of the software system structure with links between different subsystems that has been

generated by the SHriMP visualization tool.

 Data Mining

Data mining or Knowledge Discovery in Databases (KDD), refers to a collection of

algorithms for discovering or verifying interesting and non-trivial relations among data in large

databases (Fayyad, 1996). A substantial number of data mining approaches in the related literature

are based on extensions of the Apriori algorithm by Agrawal (Agrawal & Srikant, 1994). These

approaches are pertinent to the concept of market baskets (or transactions). A market basket (or

simply basket) contains different kinds of items, where the quantity of items of the same kind in the

basket is not considered. The association rules (Agrawal & Srikant, 1994) express the frequency

 24

 Figure 7: The application of data mining algorithms to discover group of highly

related entities. (a) Representation of functions as baskets and called functions and used

datatypes/variables as items in the baskets. (b) Representation of an iterative algorithm for

generating frequent-itemsets. (c) A discovered group of highly related entities constitute a

cohesive module.

of pattern occurrences such as 40% of baskets that contain the set of items {A,B} also contain the

set of items {C,D}. The association rules can be extracted by the iterative algorithm Apriori in two

steps. The first step extracts all combinations of items where the number of common container

baskets for each combination exceeds step generates association rules using such frequent itemsets.

The general idea is that if, for example, {A,B,C,D} and {A,B} are frequent itemsets, then the

association rule {A,B} u {C,D} can be extracted by computing the ratio:

}),({___.
}),,,({___.

BAbasketscommonofno
DCBAbasketscommonofnor =

which is known as confidence r. The association rule holds only if r > minimum confidence.

 25

 The reverse engineering approaches using data mining are very few. Montes de Oca and

Carver (Oca & Carver, 1998) use data mining association rules and a visual representation model to

graphically present the subsystems that are identified from the database representation of the

subject system. Miller and Gujarathi (Miller & Gujarathi, 1999) propose a knowledge discovery

framework and work with association rules that essentially address the statistical information about

relation between groups of entities in the database. Sartipi (Sartipi & Kontogiannis, 2001) uses a

by-product of association rules, by considering frequent itemsets along with their container baskets.

This information allows to encode the structural property of the groups of entities with maximum-

level of interaction as a similarity measure between system entities. Figure 7 illustrates the steps for

representing the software system entities as data mining baskets and their items, as well as a

discovered group of highly related entities as the collection of the baskets and the corresponding

itemset.

Pattern Based Techniques

The software architecture reconstruction techniques in this category are mostly designed as

a top-down process where the high-level view of the system is built as the user's mental model of

the system architecture. The pattern matching process then searches the source model which is

either an abstract syntax tree, a repository of architectural elements, or a relational database to

identify an exact or an approximate instance of the high-level view in the source model.

 Modeling High-level System Specification

The high-level specification of a system, also called “architectural pattern” or “conceptual

architecture” is an integral part of the pattern based architectural reconstruction techniques. The

specification should represent an abstraction of the components and their interactions as well as a

 26

mechanism to constrain the type of the involved system entities and data/control dependencies. In a

typical scenario for defining the high-level model of a system, the software engineer uses

information from different sources such as: analytical data and statistical metrics on system

properties provided by the toolkit; and knowledge about the application domain and the existing

system documents.

In most cases, the high-level specification is defined as a query that specifies the expected

architectural structure or behavior in the target system. An architectural query is defined using

architectural notations, e.g., component, connector, module, and import/export. The notions such as

entity, connectivity, and scope are used for structural view reconstruction. Whereas, the temporal

operators are used to specify the expected behavioral view of the system. The notions of event,

event pattern, and event tracing, are intended for behavioral recovery. The query may use directives

to lead the analysis algorithm to a specific architectural analysis task. In these techniques, the high-

level view of the system is modeled either as a collection of architectural styles (Harris et al, 1995),

a graph of architectural elements (Kazman & Burth, 1998), an ADL based query (Sartipi, 2003), an

SQL based query (Kazman & Carriere, 1999), or an XML based query (Pinzger & Gall, 2002).

 Pattern Matching Techniques

Sartipi (Sartipi, 2003) proposes a pattern-based architecture reconstruction approach that

uses an architecture query language (AQL) to model the architectural pattern of the system as a

constrained graph of components and connectors. The design of the AQL language has been

inspired from the current architecture description languages (ADL). In this approach, a graph

matching engine incrementally expands the architectural pattern (defined in AQL language) into a

pattern graph and matches it with the system graph. The search algorithm uses a graph distance

 27

measure computed using costs of node/edge deletion/insertion to find a sub-optimal match as the

recovered architecture.

Kazman and Burth (Kazman & Burth, 1998) introduce an interactive architecture pattern

recognition to recover user defined patterns of architectural elements in a system. The system is

modeled as a graph of architectural elements, i.e., components and connectors. Each component or

connector is defined using common features, namely static and temporal features, causing the

elements to be treated in the same way (Kazman, Clements, Abowd, & Bass, 1997). The user

defines an architectural pattern or style as a graph of elements. The tool then searches to identify

instances of that graph in the source model. The tool uses the constraint satisfaction paradigm

(Woods & Yang, 1995) to restrict the search space. The hard/soft features of the elements allow to

relax the exact matching in order to perform approximate matching. The approach provides

statistics about the regularity of a system in terms of its coverage by a particular pattern.

Kazman and Carriere (Kazman & Carriere, 1999) propose Dali as a workbench that allows

different light-weight tools and techniques to integrate for an architectural reconstruction task. Dali

extracts elements (function, files, variables, objects), a collection of relations (e.g., function calls),

and a set of attributes of elements and relations (e.g., function calls function N times), and stores

them in a relational database. In this context, a pattern consists of a collection of SQL queries that

have been integrated via Perl expressions. The primitive SQL queries collect the architectural

components and their derived relations by querying the relational database. The reconstruction

process requires the involvement of the user who is familiar with the system's domain (domain

expert) and has experience with composing SQL queries. In order to recover the architecture of a

system the user composes two sets of pattern queries namely “common application patterns” that

are used for all systems and “application-specific patterns” that require knowledge about the

 28

domain's reference architecture. In each set of queries the smaller entities are collapsed into larger

components, and relations between components are derived.

 Harris et al. (Harris et al., 1995) identify architectural styles (about nine styles) in the

source model. The method uses an annotated AST of the system as the search domain and an

architectural query language, built on top of the Refine language, that codifies the desired

architectural styles. A number of style recognition queries (around 60) constitute the base of the

recognition process. A specialized query is composed to search for specific style related properties

in the source model. This query triggers a set of more specific style queries as subgoals, and then

reports on the degree of success in recognizing that style and its code-coverage. In a similar

approach, Fiutem et al. (Fiutem et al., 1996; Fiutem, Tonella, Antoniol, & Merlo, 1996) use

“recognizers” and flow analysis techniques in architectural reconstruction.

 Compliance Checking Techniques

In these techniques, the analyst first defines his/her assumed high level model of the

software in an appropriate form (e.g., modules and interconnection, inheritance hierarchy, design

pattern, architectural style, or query). The tool then checks the degree of conformance between the

proposed model and the source model. The following approaches are examples of compliance

checking techniques.

Murphy and Notkin (Murphy et al., 1995) have proposed the software Reflexion model to

assist the user in testing whether his/her mental model of the system conforms with the system. The

user employs a textual declarative form to define a high-level model of the system, and link this

model to the source model. The source model is a call graph or an inheritance hierarchy. A

software Reflexion model is then computed to determine where the user's high-level model

conforms with the source model and where does not conform. The user interprets the Reflexion

 29

model and defines new relations based upon the results. Regular expressions are used in the forms

to facilitate the link of a group of source model entities to a high-level entity.

Kontogiannis et al. (Kontogiannis et al., 1995) propose a stochastic approach for structure

compliance checking which is based on the notion of concept-to-code mapping. In this approach, a

concept language models abstract properties of a desired code fragment. The pattern matching

process is based on the Markov model and a similarity measure between an abstract pattern and a

piece of code is defined in terms of the probability that the abstract pattern can generate that piece

of code. Dynamic programming has also been used to reduce the complexity of the required

computations.

 Constraint Checking Techniques

Software architecture reconstruction has also been considered as a constraint satisfaction

problem (CSP). In CSP the values of a set of variables are restricted by the constraints that are

defined between the variables. A solution to a CSP is an assignment of values to variables such that

the constraints are satisfied. In the CSP problems the constraints are considered as “hard” that can

not be violated. Woods (Woods & Yang, 1995) generalizes the problem of program understanding

as an instance of the constraint satisfaction problem. Other variations of CSP may consider soft

constraints that can be violated to a certain extent.

Sartipi et al. (Sartipi, Kontogiannis, & Mavaddat, 2000b) proposes an approach to software

architecture reconstruction that uses an extension to the CSP problem known as Valued Constraint

Satisfaction Problem framework (VCSP) (Schiex et al., 1995), that allows over-constraint problems

to be dealt. In the VCSP framework a cost function assigns a cost for violation of each constraint,

and the cost for a certain value to variable assignment is the overall cost of constraints that are

violated by such an assignment. The goal is to find a complete assignment of minimum cost.

 30

SCALABILITY OF THE RECONSTRUCTION PROCESS

The large size and the complexity of relations among the system entities are the sources of

problem in dealing with large systems. The main idea is to decrease the domain space in searching

for architectural information without losing relevant information. In this connection, in (Sartipi,

2003) several heuristics have been proposed that are briefly discussed below.

Incremental Reconstruction

An effective heuristic in decreasing the time and space complexity of the search process is

to divide the whole search space into sub-spaces and then perform incremental reconstruction

process where the architectural components are recovered one at a time. The heuristic consists of

two steps. In the first step, the search space is divided into many sub-spaces according to the

particular property. For example: a sub-space can be a group of associated entities if the objective

is to recovered components that are highly associated; or a sub-space can be a group of functions

that perform data read and write on specific files in order to recover “filter” components. Then at

each iteration of the incremental reconstruction process, one sub-spaces is selected according to its

eligibility which is determined by a ranking mechanism to choose the best candidate sub-space.

Sub-Optimal Reconstruction Process

The search techniques play an important role in exploring non-trivial relationships in a

software system as a part of a reverse engineering task. Because of the prohibitive size of the search

space in dealing with large systems, it is imperative to make a trade-off between the quality of the

recovered components and the search complexity. In this context, some researchers use non-

 31

complete and non-optimal but fast search techniques such as hill climbing (Mancoridis et al., 1998).

In (Sartipi & Kontogiannis, 2001) a heuristic version of the optimal search algorithm A* is

proposed that significantly reduces the time/space requirement of the A* search with the cost of

having a sub-optimal reconstruction process. Also, approximate matching is another technique that

uses a cost function and recover the architectures that are close to an intended architecture within a

boundary of a particular threshold (Kazman & Burth, 1998).

Hierarchical Reconstruction Process

The architectural reconstruction process of large systems with several hundreds thousands

of lines of code such as Linux operating system (Bowman et al., 1999) is usually limited to

activities such as consulting with the existing system documents, relying on the exactness of the

naming conventions (if exist) for files and directories, and the directory structure. In such cases, the

lowest granularity of the system entities is file and directory. However, a detailed analysis is not

directly feasible where the lowest granularity are function, user-defined aggregate types, and global

variables. The hierarchical reconstruction of large systems usually consists of three levels, as: i)

decomposing the system into a few large subsystems; ii) decomposing each large subsystem into a

number of smaller subsystems of files and directories; and iii) decomposing each small subsystem

into a number of modules of functions, aggregate/array types, and global variables.

USER INVOLVEMENT IN THE RECONSTRUCTION PROCESS

In the current approaches to architectural reconstruction the role of user is increasingly

important in order to incorporate design-specific criteria in the process of structure reconstruction

 32

of a software system. Such design-specific criteria can not be fully formulated in order to be

automatically investigated by the analysis program. In such a cooperative environment, the mission

of the tools has also been shifted from complex search and recovery strategies to semi-automatic,

user assisted based strategies allowing a variety of domain-specific information to be considered

during the reconstruction process (Finnigan et al., 1997; Chin & Quilici, 1996). In this context, the

new terms such as librarian and patron (Finnigan et al., 1997) refer to the system information

accumulation for human usage.

In such cases, the analysis tool, as the user assistance, must process the raw information that

represents the software system so that the user, as the high-level decision maker, can interpret and

assess the processed information, in order to get insight into the system and also to make decision

for the next step of the reconstruction. Examples of such information include:

• Statistical metrics. Association relation among the system files; fan-in and fan-out; and

architectural design views (Sartipi, 2001b).

• Visualization means. Simplifying the graph views (Sartipi & Kontogiannis, 2003b); Source

code browsing mechanism through HTML pages (Finnigan et al., 1997; Storey et al., 2001;

Sartipi & Kontogiannis, 2003b).

• Pattern generation. Analyzing the system representation database in order to identify the

locus of interactions among system entities; this would allow the user to select the cores of

functionality of the system via a ranked list (Sartipi, 2003).

 33

ARCHITECTURAL EVALUATION TECHNIQUES

Evaluating the result of the reconstruction process is a debating issue with no generally

accepted evaluation criteria. Different characteristics of the recovered architecture may be tested,

including, modularity quality of the architecture through coupling and cohesion metrics, and the

non-functional qualities. One important characteristic of the recovered architecture to evaluate is

the accuracy of the reconstruction technique that can be assessed using the information retrieval

metrics Precision and Recall (Grossman & Frieder, 1998). These metrics assess the compatibility of

the recovered architecture with the documented system architecture. In this evaluation, the software

system must possess an updated architectural document as the reference architecture.

Figure 8 illustrates the accuracy assessment of the recovered subsystems for the Clips

system. Clips is an expert system builder with 40 Kilo lines of code that is supported by a complete

architectural manual (Clips, 1989). The evaluation steps are discussed as follows. First, the

subsystems of the reference architecture must be identified. Second, the recovered subsystems must

be matched against the subsystems from the reference architecture. It is common that the reference

and recovered subsystems overlap to some extent, or one or more recovered subsystems may

partially fit in one reference subsystem (or vice versa). In such cases we implicitly merge the

subsystems into one to allow almost one-to-one comparison between subsystems. Third, the

Precision and Recall metrics are computed for each recovered subsystem. Precision is defined as

the percentage of the number of the “shared files” in the corresponding recovered and reference

subsystem, to the number of “recovered files” for that subsystem. Whereas, Recall is defined as the

percentage of the number of “shared files” to the number of “reference” files for that subsystem.

 34

Figure 8: Architectural reconstruction and evaluation of the Clips system.

Figure 8 presents the evaluation of the reconstruction of the Clips system. In overall, such values of

Precision and Recall indicate a promising reconstruction result.

Validation of the Reconstruction Approach

In this section, three evaluation techniques are discussed which are based on the level of

conformance between the elements of the recovered components (i.e., subsystems of files or

modules of functions, types, variables), namely candidate components, and the elements of the

reference component. The evaluation computation in these techniques are extensions of the

Precision and Recall measures that were discussed above.

Lakhotia (Lakhotia & Gravley, 1995) evaluates the level of agreements between individual

pairs of components in candidate and reference components in a hierarchical subsystem clustering.

The metric, called congruence measure, uses both: difference between component similarities, and

overlap between component elements among the candidate and reference component.

Koschke (Koschke & Eisenbarth, 2000) proposes an evaluation metric for non-hierarchical

clustering, that is only based on the degree of overlap between the corresponding components in

 35

candidate and reference components. The technique is an extension to the Lakhotia's method by

measuring the overall accuracy and recall for the whole clustering result, as opposed to separately

comparing different pairs in Lakhotia's method. The reference components are subjectively

determined based on a set of guidelines to the software engineer. In (Koschke & Eisenbarth, 2000),

different cases such as 1-to-n or n-to-1 relation between the matching of candidate and reference

components are also considered. Koschke defines the overall accuracy of the reconstruction

process as:

||
)()(
)()(

)(),(

M
RelementsCelements
RelementsCelements

Maccuracy MRC
∑

∈=
U

I

where, C and R represent a pair of matching candidate and reference components and M is the set

of matching pairs (C, R). Considering the reconstruction example of Figure 8, the accuracy of the

reconstruction is computed as follows:

586.0
5

13
4

5
3

4
3

11
5

15
9

)(=
++++

=Maccuracy

 Mitchell (Mitchell & Mancoridis, 2001) proposes an automated method and a tool to

extract the reference components in the absence of a benchmark decomposition that is used by the

Koschke's method. A set of clustering techniques are used to produce different clustering results

which are separately stored in a database, as pairs of “a component, an element of component”. A

further analysis of the tuples generates the reference components.

 36

FUTURE TRENDS

The variety, size, and complexity of the modern software systems are continuously

increasing to meet the new demands in different industrial applications such as, tele-

communications, automotive, banking, insurance, medical, and air-traffic control. As a result, the

current maintenance techniques (in particular reverse engineering and architecture reconstruction

techniques) must be more sophisticated in order to tackle the new challenges that the software

maintainers will face. In this respect, several research areas as the potential future trends in the field

of software architecture reconstruction techniques are presented below.

• Dynamic run-time analysis. Research on dynamic aspects of a software system is more

challenging than research on structural analysis. This may be due to the difficulty of

defining proper task scenarios that generate execution traces, and the difficulty of finding

actual patterns in the generated executions traces. Therefore, more research on how to

extract and how to use dynamic information for behavioral recovery is required.

• Distributed and heterogeneous systems. With the rapid growth of distributed and network-

centric systems, architecture reconstruction techniques and tools should tackle the non-

monolithic and heterogeneous systems that are operating in platforms with different

hardware and software requirements, programming languages, and architectural patterns. In

this respect, more research is needed in analyzing distributed multi-language multi-platform

systems.

• Dealing with large scale systems. Currently, the architecture reconstruction of large systems

mostly rely on non-formal facts such as naming convention and directory structure. More

 37

research on tractable heuristics for hierarchical architecture reconstruction would allow to

incorporate structured information generated by extraction techniques at different levels,

that is at function-level, file-level, and directory level.

• Consistency and traceability among views. Most reconstruction techniques focus on only

one view of the system to recover. New techniques based on multiple view reconstruction

or multiple abstraction-level reconstruction techniques would provide much deeper

understanding about the system. In such techniques, maintaining the consistency and

traceability among the views or abstraction levels would be of significant importance.

• Reconstruction techniques for the development process. This research aims to assist the

project managements to ensure that the design objectives and requirements are met during

the implementation or the evolution of a system.

• Information exchange. Because of the expressiveness and mathematical foundation of

graphs, most of the reconstruction approaches use a customized attributed graph

representation for the software system. The research activities for standardization of the

software representation have been focused on using XML (extensible markup language) to

provide a customizable typed attributed graph representation for different software artifacts.

This standard graph can be exchanged among different tools for the purpose of information

extraction, architectural reconstruction, and analysis of the software systems. This new

trend has already attracted lots of attention among the researchers and the project GXL

(graph exchange language) has been launched to achieve this research goal (Holt et al.,

2000).

 38

CONCLUSION

The software technology is evolving and new methodologies, techniques, and tools are

emerging on the quest for better design, implementation, and maintenance of large and mission

critical software. However, when the software system is operational its functionality constantly

evolves and, if not maintained properly, in most cases its current structure drifts form its

documented and intended structure. In such cases, any well designed software system becomes a

legacy system which costs a lot for the organization to operate reliably. As an alternative to the

costly replacement of such systems, the organizations may choose to re-engineer or re-structure the

systems. In these maintenance activities, reverse engineering or architecture reconstruction is

performed first to allow the engineers understand the structure or behavior of the software system.

The scope of research in software architecture reconstruction techniques and tools spans several

research areas, including: compilers, profilers, programming languages, clustering, concept lattice

analysis, pattern recognition, data mining, graph theoretic, constraint programming, and graphical

user interfaces.

The notion of software views allows to achieve separation of concern in the reconstruction

process by classifying the set of features that are relevant to the structure, behavior, or environment

views. In this chapter, we attempted to cover the techniques for reconstruction of the structure view

of a software system. The approaches to architectural reconstruction are expected to address the

following issues: i) the view(s) of the system to be recovered, where the structure view is the most

common view to consider; ii) the software representation model, that specifies the intended

granularity of the system entities and their relations defined by a domain model or schema; iii) the

adopted high-level model of the software system, which is particularly important in the pattern-

 39

based reconstruction approaches; iv) the employed architecture reconstruction technique, which is

generally categorized as either a clustering-based technique which tends to be automated, or a

pattern-based technique which extensively relies on user for pattern definition; v) the tractability of

the reconstruction process, that is particularly important in dealing with large systems where the

heuristics may be used to trade the tractability of the process against the quality of the result; and

vi) the method of evaluating the result of reconstruction which is significantly important for the

research community to assess the variety of existing or emerging approaches.

Finally, in the discussions of this chapter it was attempted to expose the reader to a

systematic approach to the important issues, alternative solutions, and future research, in the field

of software architecture analysis and reconstruction. We believe that this chapter will provide

enough insight into this exciting area that can be used as a starting point by the interested reader to

perform further research in this area.

REFERENCES

(Rigi, Reverse Engineering Toolkit, URL=http://www.rigi.csc.uvic.ca/index.html)

(XML, Extensible Markup Language, URL = http://www.w3.org/XML/)

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of

the international conference on very large databases (VLDB) (p. 487-499).

 40

http://www.w3.org/XML/

Anquetil, N. (2000). A comparison of graphs of concepts for reverse engineering. In Proceedings of

the international workshop on program comprehension (IWPC) (p. 231-240).

Anquetil, N., & Lethbridge, T. C. (1999). Experiments with clustering as a software

remodularization. In Proceedings of the working conference on reverse engineering (WCRE) (p.

235-255).

Birkhoff, G. (1940). Lattice theory. American Mathematical Society.

Bojic, D., & Velasevic, D. (2000). A use-case driven method of architecture recovery for program

understanding and reuse reengineering. In Proceedings of the European conference on software

maintenance and reengineering (CSMR) (p. 23-31).

Bowman, I. T., Holt, R., & Brewster, N. (1999). Linux as a case study: its extracted software

architecture. In Proceedings of the international conference on software engineering (ICSE) (p.

555-563).

Canfora, G., Czeranski, J., & Koschke, R. (2000). Revisiting the delta IC approach to component

recovery. In Proceedings of the working conference on reverse engineering (WCRE) (p. 140-149).

Chen, Y.F., Nishimoto, M.Y., & Ramamoorthy, C.V. (1990). The C information abstraction

system. IEEE Transactions on Software Engineering, 16(3), 325-334.

 41

Chin, D.N., & Quilici, A. (1996). Decode: A co-operative program understanding environment.

Software Maintenance: Research and Practice, 8(1), 3-33.

Davey, J., & Burd, E. (2000). Evaluating the suitability of data clustering for software

remodularization. In Proceedings of the working conference on reverse engineering (WCRE) (p.

268-276).

Van Deursen, A., & Kuipers, T. (1999). Identifying objects using cluster and concept analysis. In

Proceedings of the international conference on software engineering (ICSE) (p. 246-255).

Eisenbarth, T., Koschke, R., & Simon, D. (2001). Feature-driven program understanding using

concept analysis of execution traces. In Proceedings of the international workshop on program

comprehension (IWPC) (p. 300-309).

El-Ramly, M., Stroulia, E., & Sorenson, P. (2002). Mining system-user interaction traces for use

case models. In Proceedings of the international workshop on program comprehension (IWPC) (p.

21-29).

Everitt, B.S. (1993). Cluster analysis. John Wiley.

Fayyad, U.M. (1996). Advances in knowledge discovery and data mining. MIT Press.

 42

Finnigan, P., Holt, R., Kalas, I., Kerr, S. Kontogiannis, K., et al.. (1997). The software bookshelf.

IBM Systems Journal, 36(4), 564-593.

Fiutem, R., Merlo, E., Antoniol, G., & Tonella, P., (1996). Understanding the architecture of

software systems. In Proceedings of the workshop on program comprehension (p. 187-196).

Fiutem, R., Tonella, P., Antoniol, G., & Merlo, E. (1996). A cliché-based environment to support

architectural reverse engineering. In Proceedings of the international conference on software

maintenance (ICSM) (p. 319-328).

Godin, R., & Mili, H. (1996). Building and maintaining analysis-level class hierarchies using galois

lattices. ACM SIGPLAN Notices, ACM Press, 28(10), 94-410.

Grossman, D.A., & Frieder, O. (1998). Information retrieval: algorithms and heuristics. Kluwer

Academic Publishers.

Harris, D.R., Reubenstein, H.B., & Yeh, A.S. (1995). Reverse engineering to the architectural level.

In Proceedings of the international conference on software engineering (ICSE) (p. 186-195).

Holt, R., Winter, A., & Schurr, A. (2000). GXL: Toward a standard exchange format. In

Proceedings of the working conference on reverse engineering (WCRE) (p. 162-171).

 43

Hutchens, D.H., & Basili, V.R. (1985). System structure analysis: Clustering with data binding.

IEEE Transactions on Software Engineering, SE-11(8), 749-757.

Jain, A.K. (1988). Algorithms for clustering data. Prentice Hall.

Kazman, R., & Burth, M. (1998). Assessing architectural complexity. In Proceedings of the

European conference on software maintenance and reengineering (CSMR) (p. 104-112).

Kazman, R., & Carriere, S.J. (1999). Playing detective: Reconstruction software architecture from

available evidence. Journal of Automated Software Engineering, 6(2), 107-138.

Kazman, R., Clements, P., Abowd, G., & Bass, L. (1997). Classifying architectural elements as a

foundation for mechanism matching. In Proceedings of the international computer software and

applications conference (COMPSAC) (p. 14-17).

Kontogiannis, K., DeMori, R., Bernstein, M., Galler, M., & Merlo, E. (1995). Pattern matching for

design concept localization. In Proceedings of the working conference on reverse engineering

(WCRE) (p. 96-103).

Koschke, R. (1999). An incremental semi-automatic method for component recovery. In

Proceedings of the working conference on reverse engineering (WCRE) (p. 256-267).

 44

Koschke, R., & Eisenbarth, T. (2000). A framework for experimental evaluation of clustering

techniques. In Proceedings of the international workshop on program comprehension (IWPC) (p.

201-210).

Kruchten P.B. (1995). The 4+1 view model of architecture. IEEE Software, 12(6), 42-50.

Kunz, T., & Black, J.P. (1995). Using automatic process clustering for design recover and

distributed debugging. IEEE Transactions on Software Engineering, 21(6), 515-527.

Lakhotia, A. (1997). A unified framework for expressing software subsystem classification

techniques. Journal of Systems and Software, 36(3), 211-231.

Lakhotia, A., & Gravley, J. (1995). Toward experimental evaluation of subsystem classification

recovery techniques. In Proceedings of the working conference on reverse engineering (WCRE) (p.

262-269).

Lindig, C., & Snelting, G. (1997). Assessing modular structure of legacy code based on

mathematical concept analysis. In Proceedings of the international conference on software

engineering (ICSE) (p. 349-359).

Mancoridis, S., Mitchell, B., Rorres, C., Chen, Y., & Gansner, E. (1998). Using automatic

clustering to produce high-level system organizations of source code. In Proceedings of the

international workshop on program comprehension (IWPC) (p. 45-53).

 45

Miller, R.J., &Gujarathi, A. (1999). Mining for program structure. International Journal on

Software Engineering and Knowledge Engineering, 9(5), 499-517.

Mitchell, B.S., & Mancoridis, S. (2001). Craft: A framework for evaluating software clustering in

the absence of benchmark decompositions. In Proceedings of the working conference on reverse

engineering (WCRE) (p. 93-102).

Muller, H.A., Orgun, M., et al..(1993). A reverse-engineering approach to subsystem structure

identification. Software Maintenance: Research and Practice, 5, 181-204.

Murphy, G., Notkin, D., & Sullivan, K. (1995). Software Reflexion model: Bridging the gap

between source and higher-level models. In Proceedings of the ACM SIGSOFT SFSE (p. 18-28).

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing knowledge

about information systems. ACM Transactions on Information Systems, 8(4), 325-362.

De Oca, C.M., & Carver, D.L. (1998). A visual representation model for software subsystem

decomposition. In Proceedings of the working conference on reverse engineering (WCRE) (p. 231-

240).

Patel, S., Chu, W., & Baxter, R. (1992). A measure for composite module cohesion. In Proceedings

of the international conference on software engineering (ICSE) (p. 38-48).

 46

Pinzger, M., & Gall, H. (2002). Pattern-supported architecture recovery. In Proceedings of the

international workshop on program comprehension (IWPC) (p. 53-61).

Poulin, J.S. (1996). Evolution of a software architecture for management information systems. In

Proceedings of the international software architecture workshop (ISAW-2) (p. 134-137).

Sartipi, K. (2001a). Alborz: A query-based tool for software architecture recovery. In Proceedings

of the international workshop on program comprehension (IWPC) (p. 115-116).

Sartipi, K. (2001b). A software evaluation model using component association views. In

Proceedings of the international workshop on program comprehension (IWPC) (p. 259-268).

Sartipi, K. (2003). Software architecture recovery based on pattern matching. Doctoral dissertation,

School of Computer Science, University of Waterloo, Waterloo, ON, Canada.

Sartipi, K. & Kontogiannis, K. (2001). Component clustering based on maximal association. In

Proceedings of the working conference on reverse engineering (WCRE) (p. 103-114).

Sartipi, K., & Kontogiannis, K. (2003a). On modeling software architecture recovery as graph

matching. In Proceedings of the international conference on software maintenance (ICSM) (p. 224-

234).

 47

Sartipi, K., & Kontogiannis, K. (2003b). A user-assisted approach to component clustering. Journal

of Software Maintenance: Research and Practice (JSM), 15(4), 265-295.

Sartipi, K., Kontogiannis, K., & Mavaddat, F. (2000a). Architectural design recovery using data

mining techniques. In Proceedings of the European conference on software maintenance and

reengineering (CSMR) (p. 129-139).

Sartipi, K., Kontogiannis, K., & Mavaddat, F. (2000b). A pattern matching framework for software

architecture recovery and restructuring. In Proceedings of the international workshop on program

comprehension (IWPC) (p. 37-47).

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and

easy problems. In Proceedings of the international joint conference on artificial intelligence

(IJCAI) (p. 631-637).

AI Section, Lyndon B. Johnson Space Center (1989). Clips architectural manual version 4.3.

Siff, M., & Reps, T. (1999). Identifying modules via concept analysis. IEEE Transaction on

Software Engineering, 25(6), 749-768.

Software development kit: Refine/C user’s guide for version 1.2. (1998). 700 E. El Camino Real,

Mountain, CA 94040, USA.

 48

Soni, D., Nord, R.L., & Hofmeister, C. (1995). Software architecture in industrial applications. In

Proceedings of the international conference on software engineering (ICSE) (p. 196-207).

Storey, M.A., Best, C., Michaud, J. (2001). Shrimp views, an interactive environment for

exploring Java programs. In Proceedings of the international workshop on program comprehension

(IWPC) (p. 111-112).

Tzerpos, V., & Holt, R.C. (1998). Software botryology: Automatic clustering of software systems.

In Proceedings of the international workshop on large-scale software composition (p. 811-818).

Tzerpos, V., & Holt, R.C. (2000). ACDC: An algorithm for comprehension-driven clustering. In

Proceedings of the working conference on reverse engineering (WCRE) (p. 258-267).

Wallmuller, E. (1994). Software quality assurance: A practical approach. Prentice Hall.

Wiggerts, T.A. (1997). Using clustering algorithms in legacy systems modularization. In

Proceedings of the working conference in reverse engineering (WCRE) (p. 33-43).

Woods, S.G., & Yang, Q. (1995). Program understanding as constraint satisfaction. In Proceedings

of the working conference on reverse engineering (WCRE) (p. 314-323).

Zachman, J.A. (1987). A framework for information systems architecture. IBM Systems Journal,

26(3), 276-292.

 49

Zaremski, A.M., & Wing, J.M. (1995). Specification matching of software components. In

Proceedings of the SIGSOFT 95 Software Engineering Notes, 20(4), 6-17.

 50

	Book title:
	
	
	Managing Corporate Information Systems Evolution and Maintenance

	Chapter title:
	
	
	Software Architecture Analysis and Reconstruction

	Kamran Sartipi, PhD
	Assistant Professor
	ABSTRACT
	INTRODUCTION
	SOFTWARE ARCHITECTURE RECONSTRUCTION
	Issues in Software Architecture Reconstruction
	
	What Views of the System to Recover

	How to Represent the Software System
	What Reconstruction Technique to Use
	How to Make the Reconstruction Process Tractable
	How to Involve the User in Reconstruction
	How to Validate the Recovered Architecture

	ARCHITECTURAL VIEWS
	Structure View
	Behavioral View
	Environment View

	SOFTWARE SYSTEM REPRESENTATION
	Domain Model
	Source Model Definition

	TECHNIQUES FOR ARCHITECTURAL RECONSTRUCTION
	Clustering Techniques
	
	Requirements for a Clustering Technique
	Automatic and Semi-Automatic Clustering Techniques
	Concept Lattice Analysis
	Visualization Techniques
	Data Mining

	Pattern Based Techniques
	
	Modeling High-level System Specification
	Pattern Matching Techniques
	Compliance Checking Techniques
	Constraint Checking Techniques

	SCALABILITY OF THE RECONSTRUCTION PROCESS
	Incremental Reconstruction
	Sub-Optimal Reconstruction Process
	Hierarchical Reconstruction Process

	USER INVOLVEMENT IN THE RECONSTRUCTION PROCESS
	ARCHITECTURAL EVALUATION TECHNIQUES
	Validation of the Reconstruction Approach

	FUTURE TRENDS
	CONCLUSION
	REFERENCES

