
Client-side Service Composition Using Generic Service

Representative

Mehran Najafi and Kamran Sartipi
Department of Computing and Software

McMaster University
Hamilton, ON, Canada

{najafm, sartipi}@mcmaster.ca

Abstract

Traditionally, composition of web services is
performed at the server-side. This requires
transferring client data among collaborating
web services, which may cause data privacy
violation, security breaches, or network traffic
overloading. In this context, we introduce the
concept of ”task service” which is a web ser-
vice that can process the client data locally at
the client-side using a generic software agent
that we call ”service representative”. The pro-
posed task service and service representative
allow us to present a new concept called ”client-
side service composition”, where collaborating
web services employ the service representative
to provide a composite task service at the client
side. Therefore the client is not required to re-
veal its resources to service providers and hence
its privacy and security are maintained. More-
over, large client data are processed locally that
results in less network traffic. We have devel-
oped a prototype system for the proposed ex-
tended SOA model. Finally, we will discuss
the advantages of the proposed approach over
traditional server-side approaches using a case
study in healthcare domain.

1 Introduction

In Service Oriented Architecture (SOA) the
business functionality of an enterprise is mod-

Copyright c© 2010 Mehran Najafi and Dr. Kamran
Sartipi. Permission to copy is hereby granted provided
the original copyright notice is reproduced in copies
made.

eled by (web) services. To achieve more so-
phisticated functionality, web services should
be reusable and composable. Business Process
Execution Language (BPEL) is an industry-
wide standard that models a business process
based on collaborating web services. Moreover,
the BPEL process is provided as a compos-
ite web service that can be called by a service
client.

A traditional simple or composite web ser-
vice processes client request completely at the
server-side. This requires the client to send its
data as the service parameters to the service
provider. On the other hand, there are several
cases in business domain that the client data
should be processed locally at the client-side
such as:

• Client data is confidential and revealing it
to a service provider violates the client’s
privacy and security.

• Client data is large or changing over time,
thus transferring it to a service provider
increases the required bandwidth.

• Real-time and time-critical services, where
transferring client data to a service
provider increases the response time.

Since, traditional web services lack the abil-
ity of client-side processing, they fail to pro-
vide an efficient and secure way to model these
services. As a solution, a service provider
can customize a software agent and send it as
its service response to process client data lo-
cally. However, this solution increases the net-



Figure 1: Proposed extended SOA reference
model, where ”Service Representative” pro-
cesses client data based on an assigned ”Task”
from the service provider.

work traffic and introduces security and pri-
vacy problems. As an alternative, we propose
a generic software agent that is located at the
client side and can be customized and trained
with the service messages to perform a task
(i.e., processing client data locally). We define
this generic agent as Service Representative,
and the type of service that requires client-side
processing as Task Services. Figure 1 shows
the extended SOA reference model to support
task services. Furthermore, we extend the no-
tion of task service and service representative
to perform composite tasks at the client side.
Consequently, client data are processed at the
client side and web services are composed via
the service representative. As a result, the pro-
posed model improves the current state of SOA
in terms of maintaining the client privacy and
security, reducing the network traffic as well as
improving the web service interoperability.

The organization of this paper is as fol-
lows. Task services are introduced in Section
2. Client-side service composition is described
in Section 3. The proposed architecture and its
main components are discussed in Section 4.
The developed prototype system is described
in Section 5. A case study of composite task
services is presented in Section 6. Section 7 dis-
cusses related work to our approach. Finally,
conclusions and future work are discussed in
Section 8.

2 Task Service

Data service represents a typical web service
that receives client data, processes it entirely at
the server-side, and returns the results as the
service response to the client. The service re-
sponse will be consumed directly by the client.

Task service represents a new type of web
service that processes client data partially or
completely at the client-side. According to the
client request, a task service first performs re-
quired server-side processing and then it defines
a task for the generic service representative to
perform client-side processing. The task will
be executed at the client-side and the client
will use the task result as the service response.
A task service returns a task message to the
client-side with the following components:

Task =< Model, Knowledge, Data >

• Task Model specifies a task using an ab-
stract Business Process Model (BPM).

• Task Knowledge provides the required
Business Rules (BR) and Business Actions
(BA) to realize the specified BPM.

• Task Data represents Business Objects
(BO) that are consumed by the busi-
ness rules and actions during the busi-
ness process. Task data consists of two
parts: server-side (provided by the service
provider) and client-side (provided locally
by the service client).

Service representative is a generic and client-
side software agent that can be employed by a
service provider to perform different task ser-
vices. For this purpose, the service represen-
tative uses the received task components to
customize and train itself in order to perform
client-side processing of the web service on the
client data (i.e., client-side task data). Task
components are messages that can be trans-
mitted efficiently over the network. Conse-
quently, the proposed ”generic service repre-
sentative and its assigned task” relieve a ser-
vice provider from sending the entire ”special-
ized agent” each time. Moreover, the client de-
termines both the local data that the service



Figure 2: Task service to personalize general financial advice based on the client personal information
at the client site. Conditions are expressed using First Order Logic (FOL) and actions are defined
using Java statements. In each step of the task model, the corresponding rules and actions are
applied.

representative can access and the computer re-
sources (e.g., CPU time, storage, and mem-
ory) that the service representative requires.
Therefore processing client data using service
representative improves the security, privacy,
and efficiency features of both traditional web
services (data services) and mobile agent ap-
proaches.

Figure 2 illustrates different components of
a task service that provides personalized finan-
cial advice without asking the client to send
its personal information. This service receives
client’s general preferences such as: category
of investment (stock, option, or mutual fund);
term duration (short term or long term);
and risk level (low, medium, or high). The
client keeps the sensitive information local and
private, such as client’s financial information
(portfolio, saving, debt, and salary). This task
service has both server-side and client-side
processing as follows.

• Server-side processing: the service
provider generates a set of general finan-
cial advice (stock buy and sell advice)
according to the client’s preferences. A
stock buy (or sell) advice recommends the
client to have minimum (or maximum)
percentage of a specific share in their
portfolio. Moreover, it specifies a task for
the service representative to personalize
the generated general advice based on the
local client’s financial information.

• Client-side processing: a service represen-
tative receives the task, which allows it
to customize and train itself in order to
perform the task. According to the task
model, service representative applies Give
Buy Advice and Give Sell Advice business
rules on both client-side and server-side
task data and returns the generated per-
sonalized advice as the service response to
the client.



Figure 3: Example of a composite task service.

3 Composite Task Service

In the context of our approach, a composite
task service (as a client-side service composi-
tion approach) is defined as a combination of
data and task services over a designated flow
structure that is performed by a service repre-
sentative at the client side. The service repre-
sentative plays the role of a service orchestrator
that coordinates the execution of the involved
web services (both data and task services). The
incorporating web services are not aware that
they are taking part in a higher-level business
process. An example of a composite task ser-
vice is shown in Figure 3.

For each composite task service, the corre-
sponding ”composite task model” and ”task
data schema” are published as a part of the ser-
vice description in a service registry. A client
obtains the service description from the ser-
vice registry. Then, the client forwards the
composite task model to a service representa-
tive, and uses the task data schema to provide
the required client-side task data for the ser-
vice representative. The service representative
calls each involved task service according to the
model and uses the received task message to
customize and train itself for executing that
task. Each executed task modifies the client
data, which collectively represent the compos-
ite service response.

Figure 4: Steps for invoking a task service in a
BPEL model.

3.1 Composite Task Model

A composite task model specifies the exact or-
der in which participating task services should
be invoked, either sequentially or in parallel.
Moreover, conditional behaviours can be ex-
pressed.

We use BPEL to model a composite task ser-
vice that allows us to define complex business
processes in an algorithmic manner including
loops, variables, and fault handlers. We con-
sider two local services for the service represen-
tative: local data provider to read client data
from a communication channel and local task
executor to execute a received task. The re-
quired steps to call and execute a task service
are shown in Figure 4.

3.2 Client-side vs Server-side
Service Composition

The proposed client-side service composition
approach is not meant to replace the tradi-
tional server-side service composition. How-
ever, when collaborating web services require
processing confidential, large, or dynamic client
resources, composing them at the client side
can improve the following SOA features.



• Privacy: the confidential and sensitive
client data are kept local and processed at
the client side.

• Security: the service representative func-
tionality is under client control and it can
not perform malicious behaviour.

• Interoperability: task services can be com-
posed efficiently using well-known forms of
task model, knowledge, and data.

• Efficiency: large client data are processed
locally that reduces the required band-
width.

• Response Time: realtime and variable
data are processed offline that reduces the
response time.

4 Architecture

In order to develop task services that are ex-
ecuted and composed by the service represen-
tative an architecture is required. In this sec-
tion, we extend the typical architecture of SOA
implementations to enable service providers to
employ the generic service representative at the
client side. The proposed architecture (Figure
5) includes three main components as follows.

4.1 Service Client

Each service client (or ”client” for short)
consists of a client application and a commu-
nication channel as follows.

Client Application. It is a traditional
client application that sends a data or task
service request to a simple or composite service
provider. Then, the client application puts the
required client data for a task service into a
communication channel based on the schema
received from the service registry. In a case of
a data service, the client receives the service
response directly from the server (traditional
method). However, in a case of a task service
or a composite service, the client application
receives the service response indirectly from
the communication channel.

Communication Channel. It consists of
a number of ports that are connection links to
the client data, as well as the means for the
client application to receive the task service re-
sult through the service representative. The
client grants permission to the service repre-
sentative to read/write a number of its data
through these ports where ports can be in-
put, output, or bi-directional (from the client
point’s of view). Moreover, each port is as-
signed a scope as public or private. The con-
tent of a public port can be sent to a service
provider as service parameters while the con-
tent of a private port can only be used locally
by the service representative. In addition to
typical descriptions for data services, the ser-
vice registry must include the required commu-
nication channel schema for each task service.

4.2 Service Provider

An enterprise system provides a number of
services for its clients where each service
executes one or more business processes of
the enterprise. Each business process applies
business rules and performs business actions on
internal (server-side) and external (client-side)
business objects in a defined order. Therefore,
an enterprise can be modeled by a collection
of business components which are business
processes, rules, actions, and objects. On the
other hand, a business process can have server-
side and/or client-side processing. Accordingly
the proposed service provider has two layers:
the processing layer performs the server-side
processing of a web service while the task layer
defines a task for the service representative to
perform the client-side processing of the web
service at the client side. Therefore, the enter-
prise business components are divided between
these two layers. While the processing layer
applies the business components, the task layer
sends the business components to the client-
side to be applied by the service representative.

Service Interface. This supports the
communication contracts (message-based
communication, formats, protocols, security,
exceptions, and so on) for the service.



Figure 5: Extended SOA architecture to perform a client-side service composition. Each service
partner generates a three-segment task message to customize the generic service representative to
perform a sub task of the composite task.

Processing Layer. Server-side business
processes, rules and actions, and objects are
stored in the business workflow, logic, and
entities components, respectively. The busi-
ness process engine executes the corresponding
business process with each service. If the
service only requires server-side processing,
this layer responds to the client by a single-
segment response message (i.e., called data
message). Moreover, the business process
engine can modify the business components in
the task layer, if the requested task depends
on server-side processing.

Task Layer. Client-side business processes,
rules and actions, and objects are stored in
the task model, knowledge, and data compo-
nents, respectively. Since, business components
in this layer are sent to the client side, they
must be serializable. Task specifier provides
the required model, knowledge, and data for
each task request to be sent by a three-segment
response message (i.e., called task message) to
the client.

4.3 Service Representative

The proposed service representative is modeled
by a software agent whose components are in-
troduced below.

• Input: inputs client data through the com-
munication channel.

• Output: outputs task response to the client
through the communication channel.

• Knowledge Base: stores internal and
domain-based business rules and actions
to relieve the service provider from sending
them each time.

• Business Process Engine: executes a task
instance by applying business rules and
performing business actions. Moreover,
it executes BPEL processes representing
composite task models.

• Task Manager: supports the entire life cy-
cle of a task instance (i.e., from creation
to termination) that is divided into three
phases as follows.



1. Customization phase: sets up the
agent configuration (including inputs
and outputs) based on the service de-
scription published on the service reg-
istry and creates an abstract process
based on the model segment of a re-
ceived task message.

2. Training phase: generates a task in-
stance from the abstract process us-
ing internal and external task knowl-
edge.

3. Execution phase: passes the task in-
stance with the relevant task data
(i.e., received from the input compo-
nent and task data segment) to the
business process engine to be exe-
cuted. Finally, service representative
passes the task results to its outputs
to be passed to the communication
channel.

• Service Orchestrator: supports the client-
side service composition as follows.

1. Creates a communication port (i.e.,
a service stub) for each collaborating
service as well as the local services
based on the composite task model.

2. Sends the BPEL model to the busi-
ness process engine to be executed.

3. Business process engine invokes ser-
vice partners through the service
stubs; the received task messages will
be given to the task manager to per-
form the client-side processing.

5 Prototype System

To evaluate the effectiveness and feasibility of
our model, we developed a prototype system
of the proposed architecture including service
representative, two-layer service provider, and
service client. This prototype, namely Enter-
prise Representative version 1.1 (EntRep v1.1),
is implemented based on J2EE 1.5 technolo-
gies and Apache Tomcat 6.0 application server.
Service representative includes Apache ODE
1.2 to run BPEL process and Drools 5 to ap-
ply business rules and execute business actions.
Communication channel is implemented by an

array of pointers to client data stored in a
MySQL database.

EntRep v1.1 supports production rules as
the form of task knowledge where each busi-
ness rule is defined as follows:

when
< conditions >

then
< actions >

conditions are expressed by First Order Logic
and actions are defined by Java statements or
functions. Business process models are con-
verted to XML format, business rules are en-
coded by PMML standard version 3, and busi-
ness objects are serialized to form the task mes-
sage. EntRep v1.1 is provided by two Java
packages, namely the TaskService and the Ser-
viceRep, that can be imported into any service
provider and client applications as follows.

• TaskService package: provides graphical
APIs and widgets for a service developer
to develop a task service by defining the
task components.

• ServiceRep package: provides APIs for
a service client to call a task service by
following two steps.

1. Install a service representative and a
communication channel that work for
every task service. The installed ser-
vice representative including a busi-
ness process engine requires less than
3MB of hard disk.

2. Pass the client data into the com-
munication channel according to a
schema obtained from the service reg-
istry. This package provides get and
set methods to access the communi-
cation channel.

We also developed Service Representative
Manager v1.1, using ServiceRep APIs, to con-
trol different phases of a composite task execu-
tion. The client can view the content of each
port within the communication channel during
the task execution. Figure 6 illustrates a snap-
shot of the Service Representative Manager ex-
ecuting a sample composite task service.



Figure 6: Snapshot of the prototype service representative manager that is running a composite task
service.

6 Case Study

There are two types of Clinical Decision
Support System (CDSS): guideline-based and
model-based [8]. A guideline-based approach
takes patient information and matches it with
the patterns obtained from medical experi-
ments and observations. A model-based ap-
proach initially builds a decision model accord-
ing to known data (training data) and then ap-
plies this model on unknown data (test data).
Since each approach has both benefits and lim-
itations, a combined approach could lead to a
more accurate diagnosis.

CDSSs cannot be developed efficiently and
securely using traditional web services due to
the following reasons. Guideline-based ap-
proaches require transferring patient’s health
information while they are highly sensitive and
disclosure of this information would identify
patients. On the other hand, model-based ap-
proaches do not consider local data to build
their decision models. Consequently, the ob-
tained model may not be matched with the
client data. However, the local data are of-
ten too large to be transferred efficiently to the
services.

Using the proposed methodology and imple-
mented tool (EntRep version 1.1), we mod-
eled and developed a secure and context-aware
CDSS by a composite task service. While
the client passes patient health information
(as client data) to the communication chan-
nel, the service representative generates both
model-based and guideline-based recommenda-
tions without the mentioned issues. The com-
posite task is shown in Figure 7 and discussed
in the following subsections.

6.1 Service Client

The client puts its data and resources into the
communication channel (Figure 8) with the fol-
lowing ports.

1. Patient health record (private, read only):
contains the health information of the tar-
get patient.

2. Visit information (public, read only): con-
tains the information that a physician
gathers by visiting the target patient. The
medication and dose fields are filled by the
physician after consulting with the service
representative.



Figure 7: Composite task model (left) and the corresponding BPEL model (right) of the secure and
context-aware CDSS.

3. Patient database (private, read only): con-
tains the patients’ health records within
the healthcare organization.

4. Visit database (private, read only): con-
tains doctor visits’ information within the
healthcare organization.

5. Recommendation (private, read / write):
receives i) recommended medication:
guideline-based (gMedicataion) and
model-based (mMedication), ii) proper
dosage: guideline-based (gDose) and
model-based (mDose), and iii) drug to
drug interaction warnings from the service
representative.

6.2 Collaborating Services

The composite task model includes five task
services and one data service, as follows:

1. Recommend Therapy (task service): re-
ceives a diagnosis report and returns the
corresponding medication guidelines.

2. Database Checker (task service): receives
a database schema and returns a task to
verify whether the client database matches

with this schema. Moreover, this task re-
ports some statistical information about
the local database.

3. Decision Model Builder (task service): re-
ceives a diagnosis report and returns a
task to build and apply a decision model
based on the client-side patient and visit
databases.

4. Incremental Decision Model Builder (task
service): receives a diagnosis report and
returns a task to rebuild, complete,
and apply an incremental decision model
based on the client-side patient and visit
databases (incremental models can be ad-
justed and modified based on the new
training data).

5. Recommend Dose (task service): receives a
medication and returns the corresponding
dose guidelines.

6. Drug Interaction (data service): receives a
target medication and a list of active med-
ications and returns warnings if there is
one or more drug to drug interaction.



Figure 8: Communication channel schema for the secure and context-aware CDSS

Figure 9: Task generated by Recommend Therapy web service where it receives ”acute sinusitis” as
its parameter.

6.3 Service Representative

The service representative performs the com-
posite task as follows. The service represen-
tative executes the task received from recom-
mend therapy to calculate gMedication (Fig-
ure 9). Then, it verifies local databases using
database checker task service (Figure 10). If the
patient database and the visit database have
enough records, service representative executes
the task received from decision model builder
to build a decision model completely from local
data (Figure 13). Otherwise, the service rep-
resentative receives an incomplete model from
incremental decision model builder and com-
pletes it based on local databases (Figure 14).
Then, the service representative applies the de-
cision model on the patient’s health record to
obtain mMedication. The internal knowledge
base of the service representative contains the
required functions to build and apply decision
trees (both incremental and non-incremental).
Next, the service representative executes the
task received from recommend dose for gMed-
ication and mMedication to calculate gDose

and mDose (Figure 12). Finally, drug inter-
action data service is called for (gMedicine,
activeMedication) as well as (mMedicine, ac-
tiveMedication) to return the necessary drug
interaction warnings. Tasks results are stored
in the recommendation port of the communi-
cation channel that is shown in Figure 11.

Figure 11: Recommendation port after the
service representative completes the composite
task.



Figure 10: Task generated by Database Checker web service where it receives visitdb schema as its
parameter.

6.4 Evaluation

An equivalent traditional (server-side) compos-
ite web service for the presented context-aware
CDSS takes complete client’s data (i.e., pa-
tient and visit databases and records) and
returns the final recommendations. Using the
proposed (client-side) composite web service,
the patient and visit information are kept
local, and therefore the client’s privacy is
maintained. Moreover, the proposed approach
shows a better performance compared to the
traditional approach according to the following
metrics.

Service Message Size (SMS) is the total
size of service request and response messages
defined as follows.

SMS(s) = SizeRequest(s) + SizeResponse(s)

The server-side approach requires transfer-
ring complete client data from client to the
server. Although it returns small response mes-
sages containing final decision, the request mes-
sage has almost the same length as the client
data. Moreover, the collaborating web services
are either integrated into a central provider or
distributed over the network. The latter re-
quires additional sending the client data from
the central service provider to the partner ser-
vice providers.

On the other hand, the proposed (client-
side) approach processes client data locally
that implies SMS is independent of the length
of the client data. Therefore, the request mes-
sage is short while the response messages are
large containing the task definitions. Figure 15
illustrates a comparison of these approaches in
terms of SMS where they model the presented
case study. A logarithmic scale is used to show
the lower values more clearly.

Figure 15: Service Message Size comparison.

Service Response Time (SRT) is divided
into two factors: Network time (N) and Process
time (P) defined as follows.



Figure 12: Task generated by Recommend Dose web service where it receives ”amoxicillin” as its
parameter.

Figure 16: Service Response Time comparison.

SRT (s) = N(s) + P (s)

Network time is the amount of time required
to transfer request and response messages that
depends on both network bandwidth and mes-
sage size. Process time is the amount of time
it takes a web service to perform its designated
task. Since, servers use more powerful CPUs,
server-side approaches have less process time.
On the other hand, the proposed client-side ap-
proach requires smaller messages results in less
network time.

For this case study, we obtained the process
time (P (s)) for different size of client data
using a 2.4 GHZ dual-core CPU. Moreover,
we assumed PServerSide(s) = 1

2PClientSide(s)
and a high-speed bandwidth (1 Mbyte/Sec)

Figure 17: Average Response Time compari-
son.

connects the client to the servers. Figure
16 shows the result of comparison between
the client-side and an integrated server-side
service composition in terms of SRT. This
result shows the proposed approach overcomes
the traditional approaches when the client
data grows.

Average Response Time (ART) extends
the SRT metric when multi clients invoke a ser-
vice simultaneously. ART for service s where it
has n simultaneous clients is defined as follows.

ART (s, n) = 1
n ∗

n∑
i=1

SRT (Si)



Figure 13: Task generated by Decision Model Builder web service where it receives ”acute sinusitis”
as its parameter. The internal task knowledge are highlighted and C4.5 is the type of decision tree.

To compute ART for the traditional ap-
proach, we consider a non-preemptive queue for
the server processor that results in the follow-
ing equation.

PServerSide(s, n) = n ∗ PServerSide(s)

P (s, i) represents the process time of service
s when i clients call the service simultaneously.
A comparison of these approaches is shown in
Figure 17. In the proposed approach, service
clients have their own service representative,
which can process client data in parallel, and
therefore the ART is improved significantly.

7 Related Work

One of the strengths of web services is their
capacity to be composed into higher-level
composite services. Several approaches have
been proposed to address service compositions.
These approaches can be classified in differ-
ent ways. Orchestration and choreography de-
scribe two aspects of organizing web services
in a composite web service [3]. While orches-
tration requires a central process to coordi-
nate sending and receiving messages among
web services, collaborating web services com-

municate with each other directly in choreog-
raphy. Static composition takes place during
design-time while dynamic composition selects
collaborating services at run-time [10]. While
all traditional approaches compose web services
at server side, the proposed approach intends
to compose services at client side to improve se-
curity, privacy, and efficiency features in some
applications.

Contextual information has been considered
for selecting and binding services in a ser-
vice composition [5]. These approaches work
based on semantic description of web service
and client context [14]. Therefore, more service
metadata and analysis are required. In our ap-
proach, a service representative processes client
context based on a context-free task service to
provide a context-aware service response. As
a result, context-free services facilitate service
composition.

A software agent is a piece of software that
acts on behalf of an agency to serve a user [7].
Software agents have been integrated into web
services to facilitate SOA related tasks such as
service composition [13]. For example, [4] pro-
poses a distributed agent-based framework for
business process execution in SOA. Moreover,
each role or major function of an enterprise sys-



Figure 14: Task generated by Incremental Decision Model Builder web service where it receives
”acute sinusitis” as its parameter. The internal task knowledge are highlighted and IDI is the type
of incremental decision tree.

tem has been modeled by software agents [12].
In this paper, we model an enterprise agent in
business domain by the proposed service repre-
sentative.

Mobile agents [2] can physically travel across
a network and perform tasks on different nodes.
There are several security and privacy issues
to be considered in mobile agent computing.
Mobile agent architectures (e.g., Concordia [11]
and Mole [1]) also suffer from low efficiency as
they need to send the entire computer program
or process. In contrast, we propose to employ
generic client-side agents and customize them
with service messages.

Finally, the proposed architecture extends
our previous work in [9] and [6]. The former
introduces a framework for data and knowl-
edge interoperability in the health field where
it enables knowledge (i.e., medical guidelines)
to be transferred in association with data (i.e.,
patient EMR information) and the latter in-
troduces a generic software agent that resides
at the client side and customizes web service
responses based on the client context.

8 Conclusions

This paper proposes a new computational
model for SOA client-server computing when
service provider processes the server part and
defines a task for the generic service represen-
tative to perform the client part. We equipped
the service representative with a service orches-
trator to call different task services in a defined
order to address a client-side service composi-
tion approach. Consequently, the client is not
required to transfer confidential or large data
to the service provider and thus, the security,
privacy, and efficiency features of the enterprise
systems will be greatly improved.

By defining cost functions for business com-
ponents, we will investigate how to divide busi-
ness components between client and server.
Moreover, we plan to extend the SOA refer-
ence model with other generic components such
as composition certifier to support client-side
service composition. Finally, the proposed ap-
proach requires short messages to process client
resources that works well with mobile devices,
and therefore, our next work will revolve on
developing a light version of the service repre-
sentative to be installed on mobile devices and
perform task services.



About the Authors

Mehran Najafi is a PhD student in computer
science program at McMaster university. His
research interests include service-oriented ar-
chitecture, software agents, data mining, and
knowledge management. He received his Mas-
ter degree in Artificial Intelligent from the
Sharif University in Iran. He was awarded OGS
scholarship in 2009.

Dr. Kamran Sartipi received his B.Sc and
M.Sc in Electrical Engineering and M.Math
and Ph.D in Computer Science. He is a licensed
Professional Engineer of Ontario. In 2003 he
joined Department of Computing and Software
at McMaster University. Currently he is with
the DeGroote School of Business at McMas-
ter University. He has been the codeveloper
and co-director of eHealth program at McMas-
ter University.

References

[1] J. Baumann, F. Hohl, K. Rothermel,
M. Schwehm, and M. Strasser. Mole 3.0:
a middleware for java-based mobile soft-
ware agents. In The International Con-
ference on Distributed Systems Platforms
and Open Distributed Processing, pages
355–370, London, UK, 2009.

[2] P. Braun and W. Rossak. Mobile Agents:
Basic Concepts, Mobility Models, and the
Tracy Toolkit. Morgan Kaufmann Publish-
ers Inc., San Francisco, USA, 2004.

[3] C.Peltz. Web services orchestration and
choreography. Computer, 36(10):46–52,
2003.

[4] G.Li, V.Muthusamy, and H.Jacobsen. A
distributed service-oriented architecture
for business process execution. ACM
Transation on Web, 4(1):1–33, 2010.

[5] L.Bastida, F.Nieto, and R.Tola. Context-
aware service composition: a methodol-
ogy and a case study. In The Interna-
tional Workshop on Systems Development
in SOA Environments, pages 19–24, New
York, USA, 2008.

[6] M. Najafi and K.Sartipi. A Framework
for Context-Aware Services Using Service
Customizer. In The IEEE International
Conference On Advanced Communication
Technology, volume 2, pages 1339–1344,
Phoenix Park, Korea, 2010.

[7] H. Nwana. Software agents:an
overview. Knowledge Engineering Review,
11(3):205–244, 1996.

[8] R.Greenes. Clinical Decision Support:
The Road Ahead. Academic Press, Inc.,
Orlando, USA, 2006.

[9] R.Kazemzadeh and K.Sartipi. Interop-
erability of data and knowledge in dis-
tributed health care systems. In The IEEE
International Workshop on Software Tech-
nology and Engineering Practice, pages
230–240, Washington, USA, 2005.

[10] S.Dustdar and W.Schreiner. A survey on
web services composition. International
Journal of Web and Grid Services, 1:1–30,
2005.

[11] D. Wong, N. Paciorek, T.Walsh, J.DiCelie,
M.Young, and B.Peet. Concordia: An
infrastructure for collaborating mobile
agents. In The International Workshop on
Mobile Agents, pages 86–97, London, UK,
1997.

[12] L. Xiang. A multi-agent-based service-
oriented architecture for inter-enterprise
cooperation system. In The Interna-
tional Conference on Digital Telecommu-
nications, pages 22–32, Silicon Vally, USA,
2007.

[13] Y.Yamato, H.Ohnishi, and H. Sunaga.
Study of service processing agent for
context-aware service coordination. In The
IEEE Conference on Service Computing,
pages 275–282, Hawaii,USA, 2008.

[14] Y.Yamato and H.Sunaga. Context-
aware service composition and compo-
nent change-over using semantic web tech-
niques. In The IEEE International Con-
ference on Web Services, pages 687–694,
Los Alamitos, USA, 2007.


