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Abstract

This paper presents a graph matching model for the
software architecture recovery problem. Because of their
expressiveness, the graphs have been widely used for
representing both the software system and its high-level
view, known as the conceptual architecture. Modeling
the recovery process as graph matching is an attempt
to identify a sub-optimal transformation from a pattern
graph, representing the high-level view of the system, onto
a subgraph of the software system graph. A successful
match yields a restructured system that conforms with
the given pattern graph. A failed match indicates the
points where the system violates specific constraints. The
pattern graph generation and the incrementality of the
recovery process are the important issues to be addressed.
The approach is evaluated through case studies using a
prototype toolkit that implements the proposed interactive
recovery environment.

1 Introduction

Most approaches to software architecture recovery view
the recovery process as: i) a pattern matching problem that
models the recovery by identifying groups of system enti-
ties whose properties closely match with the user-defined
queries [10, 6]; ii) a clustering problem that models the re-
covery by grouping the related parts of a software system
into cohesive components [8, 9]; iii) a constraint satisfac-
tion problem that models the recovery by identifyinggroups
of entities that meet the conditions defined in a repository
of plans [16]; iv) a lattice partitioning problem that mod-
els the recovery by classifying maximally related groups of

�
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entities that are arranged in a lattice [15]; or v) a compo-
sition and visualization problem that models the recovery
by aggregating system entities into containment-hierarchy
of components [4].

The reverse engineering community has also paid partic-
ular attention to the pattern matching approaches since they
allow the use of domain knowledge and system documen-
tation in composing the pattern, hence provide a user/tool
cooperative environment for architectural recovery. More-
over, the software systems are intuitively represented as
graphs and the reverse engineering community is on the
verge of adopting a graph standard for information ex-
change among the existing reverse engineering tools [5].
This paper presents an approach to software architecture
recovery that considers the high-level design of a system
as a pattern graph, and models the recovery process as a
graph pattern matching problem that matches such a high-
level pattern graph of the system with an entity-relationship
graph representation of the source-code system entities.

The motivation for this research stems from the lack of
a reflective and uniform model for pattern-based software
architectural recovery, whereby the software system, archi-
tectural pattern, and pattern matching process, are all uni-
formly represented using a graph formalism, and the recov-
ered architecture conforms with detailed constraints of the
architectural pattern.

The remaining sections of this paper are organized as
follows. The related work is discussed in Section 2. Sec-
tion 3 presents the proposed environment for architectural
recovery. Sections 4 and 5 represent the software system
and its architectural pattern. Sections 6 and 7 discuss the
graph matching process and modeling. Section 8 presents
the tractability of the matching process. Section 9 provides
the steps for pattern generation, and Section 10 presents the
architectural recovery case studies.
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Figure 1. The interactive environment for the proposed pattern-based software architecture recovery.

2 Related work

The related approaches to this work include the fol-
lowings. In Dali [7] a pattern consists of a collection of
SQL queries that collect the architectural components and
their derived relations, whereas the approach in this paper
presents a modular pattern of the software system using the
AQL queries. In [6], the user defines an architectural pat-
tern or style as a graph of components and connectors rep-
resenting single elements and uses approximate matching
to identify the pattern in the software system. In contrast
our approach defines a macroscopic pattern on the groups
of system entities and the interaction among the groups of
entities. In [10], a software reflexion model is proposed to
assist the user in testing his/her mental model of the sys-
tem using textual declarative forms. In contrast, our ap-
proach uses a structured query as pattern and architectural
constraints to be satisfied in the recovered architecture, as
opposed to checking the validation of the facts in the pat-
tern. The approach in this paper also relates to our previous
work on a graph pattern matching approach to software ar-
chitecture recovery [14]. Specifically, the contributions of
this paper include: i) providing representation models for
the software system being analyzed and the high-level pat-
tern of components and constraints; ii) modeling the graph
matching process by a set of recursive graph equations; and
iii) steps for generating the architectural pattern graph.

3 Proposed environment for recovery process

Despite several attempts for automating the architectural
recovery process (i.e., clustering) it is generally accepted
that a fully-automated technique is not feasible. It is rather

difficult to extract the architecture of a large system at once,
hence, the architectural recovery should be an incremen-
tal process. Software systems usually consist of patterns in
their design which form the basis for the recovery process.
Most recovery processes focus on the structural properties
of a system, ignoring the high-level behavior of the system.
Finally, the role of the user is increasingly important in in-
corporating the domain knowledge and system documents
into the recovery process. Based on the above discussion,
this paper defines the software architectural recovery prob-
lem as:

devising a tractable methodology and the support-
ing tools for interactively and incrementally ex-
tracting a system’s structure using domain and
system knowledge.

We propose an interactive reverse engineering environ-
ment for incremental recovery and evaluation of the archi-
tecture of a software system in the form of cohesive mod-
ules (or subsystems) that comply with the constraints of a
user-defined pattern.

Figure 1 illustrates the different parts of the proposed in-
teractive architectural recovery environment where the thick
arrows signify the automatic or user-assisted processes in
the environment; boxes represent the different forms of in-
formation in the environment; the thin arrows indicate the
inputs and output of the graph matching engine; and the
user is the high-level decision maker that produces a mental
model of the architecture and verifies the result of recovery.
The environment consists of an off-line pre-process phase
and an on-line analysis phase.

During the off-line information extraction phase, the
software system, written in a procedural language such as
C, is parsed and presented as an attributed relational graph



whose nodes and edges conform with a domain model that
is suitable for architectural recovery. Such a domain model
provides programming language independence for the re-
covery process. The graph representation of the software
system is further processed and is divided into a collection
of subgraphs, where the appropriate subgraphs are selected
by the graph matching process as the subspaces for recovery
of the system components. Also, a similarity matrix is gen-
erated that contains the association-based similarity values
between every two system entities to be used for recovery
of cohesive components.

During the on-line analysis phase, the user defines
a graph-based architectural pattern of the system mod-
ules (subsystems) and their interactions based on: domain
knowledge, system documents, or tool-provided system
analysis information. In an iterative recovery process, the
user constraints the architectural pattern and the tool pro-
vides a decomposition of the system entities into modules
or subsystems that satisfy the constraints. In this approach,
the architectural pattern is viewed as a graph of modules (or
subsystems) and interconnections, where each module (one
node of graph) represents a group of placeholders for the
system entities (i.e., functions, types, variables) to be in-
stantiated, and each bundle of interconnections (one edge
of graph) between two modules represents data-/control-
dependencies between two groups of placeholders in two
modules. The minimum/maximum sizes and the types of
both placeholders and the interconnections are considered
as free parameters to be decided by the user (respecting the
allowed relation between two entities).

This yet un-instantiated module-interconnection repre-
sentation (can be referred to as conceptual architecture) is
directly defined for the tool, using a proprietary language
that we call Architecture Query Language (AQL) and is dis-
cussed in [14].
Pattern-graph: the AQL query is incrementally expanded
to generate a pattern-graph that represents a macroscopic
view and structural constraints for a part or the whole of the
system architecture to be recovered. The task of the tool
is then to search through the software system (again rep-
resented as a graph of system entities and relationships) to
find an sub-optimal match between the pattern-graph and
the graph of the system. The architectural recovery is per-
formed at two levels of abstraction. At the file-level, the
software system is decomposed into a number of subsys-
tems of files, and at the function-level each recovered sub-
system can be decomposed into a number of modules of
functions, datatypes, and variables.

4 Software system representation

In this approach the software system and the architec-
tural pattern are presented using the attributed relational

graph notion defined in [3].

Source-graph: the software system is represented by the
source-graph

���������	��
�����
, where the nodes ( ��� ) repre-

sent files, functions, datatypes, and variables and the edges
( ��� ) represent contain and use relationships. The nodes
and edges comply with the specific domain model, namely
abstract domain model, illustrated in Figure 2(b). In this
model different types of entities, i.e., File-abs, Function-
abs, Type-abs, Variable-abs, are a subset of the types
of entities in the software system’s source-code. Where,
Function-abs denotes functions, Type-abs denotes aggre-
gate/array types, and Variable-abs denotes global variables
in the software system. Also, functions, datatypes, and vari-
ables are called simple entities, and files are called compos-
ite entities such that a file may contain zero or more simple
entities.

Each relation in the abstract domain model, i.e., use-
F, use-T, use-V, cont-R, use-R, imp-R, exp-R, is an aggre-
gation of one or more relations in the software system’s
source-code. The relations use-F, use-T, use-V are defined
such that the implementation of a function-abstraction (i.e.,
a function in the source-code) calls another function; up-
dates/reads a variable whose type is an aggregate/array type;
or updates/reads a global variable, respectively. The relation
cont-R (i.e., contained resource) is defined such that, each
simple entity can be contained in only one file; the simple
entities in the library files are contained in the file abstrac-
tions based on the maximum frequency of using the simple
entities by the files. In this context, the externally defined
library files and their contained simple entities are not con-
sidered. The relation use-R (i.e., use resource) is defined
such that a file contains a function and that function uses a
simple entity as described above. The relation imp-R (i.e.,
import resource) is defined such that a simple entity is con-
tained in another file but is used by the subject file (and vice
versa for exp-R). Based on the above abstract domain model
the software system is parsed and represented as an attribute
relational graph whose abstraction-level is suitable for ar-
chitectural analysis, as it is illustrated in Figure 2(c). Two
labeling functions � � and � � in Figure 2(c) are used to re-
turn the important attribute values of the nodes and edges of
the source-graph in the form of a list of “attribute, attribute-
value” pairs.

In Figure 2(b), the class Entity-abs (Relation-abs)
presents the common attributes that are inherited by every
entity (relation) in the abstract domain model. These
attributes identify a source-code construct (e.g., definition,
declaration, statement, function-call, assignment) that
implement a specific entity or relation. Each relation in
the abstract domain model is an object of an “association
class” and contains the attributes “from” and “to” denoting
the source and destination entity for that relation.
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Reducing the search space: the source-graph
� �

pro-
vides a search-space for the matching process. However,
since even in a medium-size software system the num-
ber of entities and relationships that are generated are pro-
hibitively high, any matching algorithm will be intractable.

Matching phase: to address the tractability of the
matching process, the whole process is divided into

�
incre-

mental phases (as
�

partial-matchings) where
�

is the num-
ber of components to be recovered and the current match-
ing phase is identified by “ � ” ( ��� [1.. No. of compo-
nents]). Therefore, the recovery process performs a multi-
phase matching.

Source-region: the search space for the matching pro-
cess is divided into a collection of sub-spaces using data
mining association relation defined in [14], where each
sub-space is a subgraph of the source-graph

� �
, namely a

source-region
������ . All the nodes in a source-region

� ����
are associated with a distinguished node � � in that region
which is called the main-seed of the region. The group of
source-regions

������ ’s in the source-graph
� �

are stored in
a database and at the matching phase � the user selects a
source-region from the database to be matched with the in-
cremental part of the pattern. Therefore, the source-region� ���� is shown as

������	��
� where � � � � ���
is a function that

maps the current matching phase (i.e., � ) to the id-number
of the selected source-region (i.e.,

�
). At file-level analysis

the source-region nodes are files functions, datatypes, vari-
ables, and at function-level analysis the source-region nodes
are functions, datatypes, and variables.

5 Architectural pattern representation

The architectural pattern is represented by an AQL query
that defines a macroscopic pattern graph for the software
system to be matched against the source-graph

� �
.

Query-graph: the syntactic constructs of an AQL query
conform with the architectural domain model of Figure 2(a)
that define a query-graph

��� � � ��� 
 ��� �
. In this domain

model, an AQL query, or equivalently a query-graph
���

,
consists of a number of abstract components. Each abstract
component (or simply a component) can be either a subsys-
tem or a module. An abstract component is specified as a
collection of placeholders. The interconnections among the
abstract components are established by the means of ab-
stract connectors, where an abstract connector is also spec-
ified by a number of placeholders. A placeholder is a node
that can be matched with a system entity in the abstract do-
main model during the matching process. The user can con-
strain the minimum and maximum numbers of the matched
placeholders and their types in the recovered components
and connectors by formulating the AQL query.

Each abstract component contains one or more fixed en-
tities, namely main-seed(s), that appear in the result of the
recovery. The main-seed(s) for an abstract component de-
termine the source-region(s) to be searched for recovery of
that component.

In Figure 2(c), an AQL query with four modules is
parsed and represented as a query-graph

���
with four

nodes that is interpreted as follows. The module M1 with
main-seed node ��� will be matched with minimum 4 and
maximum 6 functions in the source-graph

� �
(presented

as � :
��������� �

), will import between 2 to 5 functions from
module M2 (presented as � �"! �$#%����& � ), and will export
between 1 to 4 datatypes to module M4 (presented as
�	'(! � ! ���)� � ). The interaction of M1 with other modules is
not restricted.

Pattern graph generation: the query-graph
�(�

is used
to derive a pattern-graph and an input-graph that are re-
quired for the incremental graph matching process. At
matching phase � the query-graph incrementally generates
the pattern-graph

�+*
 as follows.
Pattern-region: the ��,$- node of the query-graph

���
(as the abstract-component . 
 ) is expanded into a pattern-
region

�/* �
 through: i) generating the maximum number of
placeholder nodes (or simply nodes) defined by . 
 ; and ii)
connecting every node in the pattern-region to every other
node in the pattern-region that are allowed based on the
types of the nodes.

Edge-bundle: each edge of the query-graph
�(�

, e.g.,
edge with label � �(0 �21 � � ����1"3 0 � and of type use-F is ex-
panded into

143 0 number of edge-bundles of the same type.
Each edge-bundle connects every node from an already re-
covered component to one node (i.e, the common sink or
source node) in the pattern-region

�5* �
 with respect to the
direction of the query-graph edge. Initially, the first max
nodes of the pattern-region are selected as the common
sink/source nodes of the individual edge-bundles. However
during the matching process the common sink/source node
of an edge-bundle which is not matched yet can be redi-
rected to another node of the pattern-region. Each edge-
bundle corresponds to one node of the involving compo-
nents to be imported or exported. The group of edge-
bundles between the already recovered components (mod-
ules or subsystems) and the current pattern-region

�5* �
 is
represented by 687�9 * �;:
 1.

The rationale for generating the edge-bundles is to al-

1A group of connector-edges is denoted by <�=?>A@B=�C and represent
a group of edges that connect two graphs DFE and DHG . The connector-
edges represent the interaction between two graphs in uni-directional (us-
ing I or J ) or bidirectional (using K ) mode. The connector-edges
between a matched-graph DMLNPO E (discussed later) and the source-region
DRQ2ST;U�N)V at phase W are denoted by < L @ Q2S :N , and the edge-bundles between

a matched-graph D LN�O E and the pattern-region D�X SN at phase W are denoted

by < L @ X S :N .
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low every subset of the nodes in a source component to
be connected to every subset of the nodes in the destina-
tion component, according to the constraints defined in the
query-graph.

Figure 3(a) illustrates a query-graph
� �

with two nodes
that represent two abstract-components M1 and M2 as mod-
ules, and an edge that represents an abstract-connector
?F1:(1..2). This query-graph has the required information to
generate the incremental parts of both the pattern-graph

��* �
and input-graph

���� at phase 2 of the matching process. The
node M2 with node constraint F:(2..3) generates a pattern-
region

�/* �� with maximum of three placeholder-nodes ( � �����
to � ��� � ) of types Function-abs and the edge ?F1:(1..2) gen-
erates two edge-bundles represented by 6 7�9 * � C� in Fig-
ure 3(b). Also, the node M2 identifies the selected source-
region with main-seed node 1 in Figure 3(c), corresponding
to
������ � � � .

6 Graph matching process

A pattern-graph
�+*
 by its definition is composed of a

number of smaller patterns (i.e., individual pattern-regions�/* �
 at different matching phases � ). This composition prop-
erty allows to manage the complexity of the matching pro-
cess of a large source-graph by applying it on a region-by-
region basis.

Matched-graph: at matching phase � , the matching pro-
cess computes a sub-optimal match, namely the matched-
graph

� 7
 between a pattern-graph
�+*
 that originates from

a query-graph
� �

and an input-graph
� �
 that originates

from the source-graph
���

. The obtained result must con-
form with the constraints of the query-graph with respect
to the node and edge size-ranges. In Figures 3(b),(c),(d) an
example of matching process at phase 2 is illustrated, where
the “pattern-region

�+* �� and its edge-bundles 6 759 * � C� ”
from the pattern-graph

�5* � are matched against the “source-
region

������	� � � and its connector-edges 6 7�9 ��� C� ” from the

input-graph
���� . The result of matching is the “matched-

region
� 7 �� and its connector-edges 6 759�7 � C� ” from the

matched-graph
� 7 � . At the next iteration, the matched-

graph
� 7 � is used to build the pattern-graph

�5* � and input-
graph

�	�� to be matched at phase 3 (not applicable in this
example).

7 Graph model of the matching process

The graph summation notations “plus 
 ” for connect-
ing two graphs, and “oplus � ” for connecting a graph to
a group of connector-edges are used to model the whole
incremental pattern matching process in terms of the recur-
sive graph algebraic equations. Figure 4 illustrates the pro-
posed graph matching model where � is the matching phase
and � ��� � is the number of nodes in the query-graph

�(�
. In

this context, the matched-graph at phase zero
� 7 is defined

as a
� ��� graph with zero number of nodes and edges, and

when � � � � � � then
���
 � ��� 
 �/*
 � � *

,
� 7
 � � 7 , and

the matching process terminates. The approximate match-
ing process (equation 4) aims to compute a match between
the pattern-graph

�+*
 and the input-graph
���
 by compar-

ing different subgraphs
���
 of the input-graph

���
 against a
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transformed version of the pattern-graph
��*
 . A subgraph�	�
 with minimum graph distance to the pattern-graph

��*

(a graph distance is computed as the total cost of a number
of transformations on the pattern-graph

�5*
 such as node or
edge deletion/insertion) is the solution of the matching pro-
cess which is called the matched-graph

� 7
 .

7.1 Cost evaluation for graph matching

The equation 5 in Figure 4 defines the distance be-
tween the pattern-graph

�+*
 and a subgraph
���
 of the

input-graph
���
 , as the sum of the graph transformation

costs for matching all the placeholder-nodes inside the
pattern-region

�+* �
 with nodes from the subgraph
���
 . In

this distance, the costs for deleting the edges from inside
the pattern-region (

 6!$#
&% ), the cost for deleting the edges
from the edge-bundles (

 6!$#'7( , ), and the cost for inserting
the connector-edges (

 6! 
'7( , ) are computed. We note that,
only the incremental parts of the pattern-graph

��*
 and the
input-graph

���
 at matching phase � are being matched and
the matched-graph

� 7
�� � at phase �98 ! is fixed, as shown
in Figure 3(b) and (c). In the following, these costs are
defined.

Inside-edge deletion cost,
 6!$#
&% : this cost is defined

in Figure 5(a) with the objective of recovering cohesive
components as the matched-regions

� 7 �
 ’s at different
matching phases. This cost has two sub-costs. The first
sub-cost

� � �
7 is denoted as the default dissimilarity value

between the candidate-node �;: and each matched node
in
�/* �
 where � is the similarity value between two nodes

according to a similarity metric such as the association sim-
ilarity metric defined in [13]. The second sub-cost =< � � # �7

depends on the number of deleted edges ”


” between two
nodes. The coefficient “0.25” indicates the significance
of each missing edge compared to the dissimilarity value
between two nodes. Hence, each missing edge adds a value
of =< � � �7 to the default cost value

� � �
7 , and at worst case (two

edges deletion) the dissimilarity value doubles. Therefore,
increasing the coefficient > ��# & causes that the missing edge
to become more important than the dissimilarity value, and
vice versa. The costs for different cases of inside-edge
deletion are shown in Figure 5(a).

Connector-edge deletion cost,
 ?!
#'7( , : this cost is de-

fined in Figure 5(b) based on the number of remaining
edge-bundles “ � ” during the matching process at phase
� where the placeholder-node � 
 � � is to be matched with
candidate-node � : from the selected source-region

� ���� � 
P� .
At this time, the placeholder-nodes � 
 ��� 
 � 
 � � 
 ��� 
 � 
 � � � � in
pattern-region

�+* �
 and their connector-edges (to previously
matched-regions

� 7 �( , @�A � ) have already been matched.
Initially, for each node to be imported or exported between
the involving components one edge-bundle has been gen-
erated. As an example, for an abstract-connector with
minimum cardinality 1 and maximal cardinality 3, three
edge-bundles are initially generated. Therefore, during the
matching process, for each node to be imported/exported
one edge-bundle must be deleted. The number of remain-
ing edge-bundles “ � ” indicates the number of nodes that can
still be imported/exported to reach to the maximum number
of allowed connector-edges. To perform cost evaluation,
the connector-edges are further classified into two groups
“imported” and “exported”. Because of the space limita-
tion, we only discuss the cost for “imported connector-edge
deletion” in this paper.
Imported connector-edge deletion: for importing each
node (which is equivalent to matching an imported
connector-edge whose source node has not been imported
earlier) a whole imported edge-bundle must be deleted with
no-cost. However, within the edge-bundle that is connected
to the current placeholder node � 
 � � , for each edge dele-
tion a cost is applied. The cost evaluation steps along with
an example are illustrated in Figure 5(b). In this cost, “ � ”
is the number of remaining edge-bundles including the cur-
rent edge-bundle, i.e., “ � ” is equal to the difference between
maximum number of allowed edges to be matched and the
number of currently matched edges. The value of this cost
depends on the success of the candidate-node � : in aug-
menting the number of matched imported edges to reach to
its maximum number. Therefore, matching more imported
edges by the current node means less cost. This cost is cal-
culated based on the eligibility of the node to produce a
cohesive module, by taking into account the “inside-edge
deletion cost

 "!$#
&% ”. The coefficient “0.25” has been empir-
ically determined to give more weight for collecting a group
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Figure 5. The cost evaluation for deleting edges that are located: a) inside the pattern-region, and b)
within the edge-bundles between a recovered module and the pattern-region.

of related nodes as opposed to satisfying the max number of
imported connector-edges.

However, this cost evaluation is applied only if the
minimum (maximum) number of imported connector-
edges for pattern-region

�+* �
 still can be reached (not
exceeded) by the number of matched connector-edges for
the current node-matching � 
 � � with � : . Otherwise, the
cost is maxCost and this node-matching will be discarded.

Connector-edge insertion cost,
 6! 
')( , : If there ex-

ist edge-bundles between the pattern-region
��* �
 and the

matched-region
� 7 �( ( @ A � ) in the pattern-graph

�+*
 then
the cost of inserting a connector-edge (in the same direction
as the edge-bundles) in 6 7 ��� 9 * � :
 is maxCost. Otherwise
the cost is zero, which means the inserted connector-edge
is not part of the constrained interconnection pattern speci-
fied in the pattern-graph, hence inserting one or more new
connector-edges does not violate the interconnection pat-

tern. Figures 5(c) to (e) illustrate an example with two cases
of matching imported connector-edges where the maximum
cardinality is 2.

8 BQ-
���

search algorithm

We use the �
	 search algorithm that is modified by a
“bounded path-queue heuristic” to compute a sub-optimal
matching cost between the pattern-graph

��*
 and input-
graph

�	�
 while the AQL query constraints are not vio-
lated. The search algorithm generates a search-tree that
corresponds to the recovery of each abstract-component . 

in the query-graph

�(�
. At each node of a search-tree the

cost of graph transformations for matching “a node � : and
its edges” from the source-region with a “placeholder-node
� 
 � � and its edges” from the pattern-region are evaluated and
the search-tree is expanded from a tree-node that has the
minimum cost. The cost evaluation was discussed earlier.



Each search-tree has a maximal depth equal to the number
of placeholder-nodes in the pattern-region (or equivalently
to the maximum number of placeholders in the abstract-
component . � ).
8.1 Tractability of the matching process

The proposed environment for architectural recovery in
Figure 1 incorporates several techniques in order to tackle
the inherent complexity of an architectural recovery pro-
cesses and to provide a tractable and interactive recovery
process. These techniques are discussed below.

Sub-optimality to achieve performance. A major
drawback of the optimal search algorithms such as � 	
is the requirement to maintain all incomplete tree-paths
(partially-matched graphs) in a sorted queue that allows to
select the cheapest tree-path to expand next. This queue
grows very fast and in the worst case can have an exponen-
tial size, which makes the process of storing and sorting
the paths in the queue as a bottleneck for the algorithm.
Since the path queue is sorted, all of the eligible paths to
be expanded (i.e., low cost paths) are located toward the
head of the queue. Therefore, most of the paths with high
cost at the end of a large path-queue will never get a chance
to be expanded, and remain at the tail of the path-queue
until the end of a successful search. This property allows
us to restrict the size of the path queue within a reasonable
range (e.g., multiple hundreds of paths) at the expense
of obtaining possibly a suboptimal solution. We call this
algorithm Bounded Queue � 	 (BQ- � 	 ).

Search space reduction. The whole search process
is divided into a multi-phase search process, where at
each phase the modified � 	 search (BQ- � 	 ) recovers an
individual module using a reduced search space known as
a source-region. Therefore, the whole search space, i.e., all
nodes of the source-graph with the cardinality � � � � � � is
reduced into � � � � ����	��
� � nodes, which greatly contributes
in relaxing the search complexity.

Hierarchical architecture recovery. The proposed
architectural environment in Figure 1 allows to perform
architectural recovery at two levels of granularity for the
system entities, such that: i) at “file-level” a system of
files is decomposed into a number of subsystems of files,
and ii) at “function-level” each generated subsystem can
be decomposed into a number of modules consists of
functions, datatypes, and variables.

Implementation considerations. The implementation
of the connector-edges is crucial in reducing the complex-
ity of the proposed matching process. The main ideas are
as follows: i) preventing highly repeated operations on the

source/sink nodes of the connector-edges by caching the
source/sink nodes; ii) simplifying the edge-bundle imple-
mentation by representing it as a positive integer. Therefore,
deleting a whole edge-bundle or matching a part of edges in
an edge-bundle simply means decrementing the integer by
one; and redirecting an edge-bundle means no change on
this value.

9 Incremental pattern generation & recovery

The architectural pattern that is defined in the AQL
query and represented by the query-graph

�(�
is gener-

ated through an incremental and interactive process, as
described in the following steps.

Step 1. Decide on a method of main-seeds selection
for the AQL abstract modules/subsystems. The proposed
methods include: i) utilize knowledge about the related
domain such as a reference architecture with well-defined
components, design documentation, informal information
embedded in the source-code, naming conventions, or
directory structures; and ii) consider system analysis and
metrics such as association structure of the system files
and different methods of clustering [12]. The adopted
method(s) should be able to suggest important and rather
distinct main-seeds as the cores of functionality for the
abstract module/subsystems in the AQL query. Generate an
AQL query with zero modules/subsystems.

Step 2. Select the main-seed for the next mod-
ule/subsystem and assign the number of placeholders, e.g.,
10 for subsystem recovery and 20 for module recovery. Re-
cover the new module/subsystem where no link constraints
are defined for the new module/subsystem.

Step 3. Investigate the quality of the new recovered
module/subsystem and its interaction with the already
recovered modules/subsystems2. If the recovery is sat-
isfactory go to Step 5. Otherwise, define (or adjust)
the minimum/maximum link constraints between the
new module/subsystem and one or more previous mod-
ules/subsystems, considering: i) increasing the maximum
range causes the matching process to allocate higher scores
to the group of entities that can augment the number of
interactions to this maximum range; and ii) the minimum
range is used to restrict the number of interaction to a
minimum threshold, however it does not affect the scoring
mechanism.

2The user’s knowledge about the functionality of the mod-
ules/subsystems is required in order to impose meaningful constraints on
the modules/subsystems interaction.
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Step 4. Repeat the recovery process for the new mod-
ule/subsystem with the constrained links. If the process is
very lengthy due to backtracking, then interrupt the process
and observe the tool-provided run-time information about
the critical constrained links. Go to Step 3.

Step 5. If the number of the recovered mod-
ules/subsystems is not sufficient according to the user’s
preferences go to Step 2. Otherwise stop the recovery pro-
cess and succeed.

If the number of remaining entities in the rest-of-system
is high, an extra step, namely “constrained distribution” can
be performed. In this step a part of the remaining entities
in the rest-of-system are allocated to the recovered mod-
ules/subsystems based on the highest average closeness of
each entity to one of the recovered modules/subsystems,
provided that this allocation does not violate the link con-
straints. If a link constraint is violated the next highest mod-
ule/subsystem is tried until the allocation to any of them vi-
olates the link constraints, where the entity is returned to the
rest-of-system.

10 Case studies
In this Section, the experimental results by applying the

proposed approach are presented. A comprehensive set of
experiments related to the time/space complexity, accuracy,
stability, and quality of the architecture recovery technique
has been presented in [12]. The proposed technique has
been implemented in Alborz [11], a prototype toolkit that
aims to recover the architecture of the medium size systems
implemented in a procedural language such as C. The input
to the Alborz tool is an information base that corresponds
to the entities and relationships of the software system in
the form of an AST or RSF file. The tool provides the re-
sult of the architectural recovery into two forms: i) HTML
pages for the recovered components, tool generated met-
rics, and source code, to be visualized by a Web browser
such as Netscape; and ii) graphs of boxes and arrows to
be visualized by the Rigi tool [1], where the boxes are the
system files or the analyzed components and the arrows are
either the resource interaction (i.e., import/export) between
the components or their association strengths. The associ-
ation values among the system files are distributed over a
wide range of values, hence they can be classified into sev-
eral sub-ranges, namely “strengths of association” consist-



ing of four sub-ranges of strong, medium, loose, and weak.
This classification of values allows to simplify the visual-
ization of the association graph of the system files or com-
ponents (i.e., modules or subsystems).

The experiments are performed on six middle-size indus-
trial systems, namely: i) Xfig.3.2.3 drawing editor with 74
KLOC, ii) Clips.4.20 expert system builder with 40 KLOC,
iii) Apache.1.2.4 http server with 38 KLOC; iv) Bash.2.03
Unix shell with 44 KLOC; v) Elm.2.5.6 Unix mail sys-
tem with 35 KLOC; and vi) Ghostview.3.5.8 postscript file
viewer and navigator with 39 KLOC. However, because of
space limitation only one case is presented here.

Architecture recovery of Xfig. The Xfig system [2]
lacks any documentation on its structure and only the user
manual exists. However, a consistent naming convention
is used throughout the system files which can be used as
an aid for inferring its structure. Figure 6(a) illustrates the
generated architectural pattern of the Xfig system with four
abstract subsystems and corresponding link constraints ac-
cording to the steps in Section 9. During the incremental
and iterative recovery process this pattern yields the recov-
ered architecture in Figure 6(b) where the size constraints
for both the subsystems and links have been satisfied.

Figure 6(c) illustrates the file association graph feature
of the proposed environment for viewing the Xfig recov-
ered architecture, where only the strong and medium as-
sociation links are shown. The highly associated files are
grouped into subsystem S1-S4 and the association among
the subsystems are limited. The subsystem S1-S4 has high
association with subsystem S3 but low association with sub-
systems S2 and S5 as it was aimed for. Figure 6(d) presents
the accuracy of the Xfig recovery process in terms of the
Precision and Recall metrics. The subsystem S1-S4 recov-
ers all the drawing files and together with S3 recover almost
all the editing and utility files. S2 is allocated to windowing
files and S5 recovers file-manipulation files. The obtained
Precision and Recall values indicate the accuracy for the
proposed pattern matching technique.

11 Conclusion

This paper contributes to the reverse engineering re-
search area by providing an interactive environment for ar-
chitectural recovery, an incremental graph pattern matching
model of the recovery process, and a prototype toolkit to
support the proposed methodology. The proposed environ-
ment is based on techniques from the areas of data mining,
approximate graph matching, clustering, and programming
language design.
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