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Abstract

In this paper, we introduce a view-based architectural
design evaluation model that allows to quantitatively eval-
uate and categorize the design of a software system. The
model is based on the notion of component association
which is a generalization of coupling and cohesion met-
rics. The component association is defined as a measure
of the overall dependency among high-level system compo-
nents such as files, modules, or subsystems with regard to
a collection of criteria. The associations are discovered by
applying data mining techniques on a database of data and
control flow dependencies extracted from the software sys-
tem. The proposed association-views and modularity met-
rics allow the user to evaluate the design quality of a soft-
ware system.

1 Introduction

As an integral part of a reverse engineering task, the user
investigates the system domain and documents to obtain in-
sight into the system under analysis. To assist this task,
various CASE tools provide meaningful and well presented
metrics about the software system. We present a measur-
ing technique for both inter- and intra-component interac-
tions that has been inspired from the coupling and cohesion
metrics. In this context a component is defined as a named
group of system entities.

In a software system consisting of modules, coupling is
a measure of the “relative interdependence among the mod-
ules” [15], and is measured based on the complexity of the
interface between the modules [11]. The cohesion is a mea-
sure of the “relative functional strength of a module” [15]
and is usually measured by techniques based on program
slicing [6].
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We obtain the coupling and cohesion properties
among system components by measuring the inter-/intra-
component associations, where the association is a property
among highly related groups of entities in term of the max-
imum number of shared entities in the groups.

The proposed technique allows us to measure the modu-
larity of the software system, as an indication of the quality
of the system design and its decomposition into subsystems.
In this context, we generate three almost orthogonal associ-
ation views of a system denoted as control passing, data ex-
change, and data sharing views, each illustrating a projec-
tion of a graph of components and association links based
on a particular data-/control-dependency property. Using
these views, we consider three design properties for a sys-
tem based on sharing, passing, or encapsulating the state
of the system, regardless of the system’s adopted design
methodology and architectural style.

In this approach, the software system is modeled as an
attributed relational graph with the system entities as nodes
and data-/control-dependencies as edges. The application of
data mining techniques on the system graph allows to de-
compose the graph into domains of entities based on the as-
sociation property and then populate a database of these do-
mains. An analysis of the domains generates a component
graph where the edges represent the association strengths
among the components, to be used for quality analysis.

2 Motivation

In the software engineering literature, coupling and co-
hesion properties have been defined using ordinal scales,
namely: data, stamp, control, external, and common as cou-
pling categories; and coincidental, logical, temporal, proce-
dural, communicational, sequential, and functionalas cohe-
sion categories [15]. Both properties are used for decompo-
sition of a system into modules of system entities. There
are less controversial proposals for coupling measurement
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than cohesion measurement. The coupling proposals fol-
low different paths but in the same spirit of the original
definition as “relative interdependence among the modules”
[11, 9, 14].

On the other hand, measuring the cohesion of a module
is still challenged by different proposals [13]. Determining
a module’s cohesion based on the original definition usually
requires a program slicing technique [6] which is computa-
tionally expensive. Therefore, a number of authors have
adopted a different approach and view the cohesion as “co-
herence” [13] or “intra-connectivity [11] which is in fact a
form of external property of a function as opposed to in-
ternal properties extracted by the slicing methods. The pro-
posals in this group consider a number of shared features for
each function and determine the cohesion as the degree of
sharing different sets of features such as: global variables,
function calls, or data types [10, 8]. In this form a cohe-
sive module is produced by clustering the functions based
on high similarity degree among them with respect to a set
of shared features [9].

Considering a system of large components at the archi-
tectural level, measuring the coupling and cohesion met-
rics need to be generalized to capture the complexity of
the inter- and intra-component interaction. The component
interfaces usually cover different types of couplings which
requires a form of averaging to present a single value to
demonstrate the coupling among components. The same
argument is valid for cohesion measurement.

Based on the above observations, we propose a single
measuring technique to evaluate the coupling between two
components or the cohesion of a component which is de-
rived from important data and control flow dependencies
between or within the components. The metric measures
the association or relevance of the groups of entities in the
components in term of the number of shared entities in a
highly related group of entities. We call this metric compo-
nent association and use it as a similarity measure between
components in a system. In this paper, we use this similarity
metric to analyze the quality of a system’s design. In a fu-
ture work, we will use this similarity metric in a clustering

technique. In this model, the degree of association (or rel-
evance) between two groups of functions is approximated
as the overall coupling between two groups. Also, the de-
gree of association of a group of function with themselves
is approximated as the overall cohesion in that group.

3 Software evaluation model

The proposed approach to software evaluation based on
component association consists of three phases (Figure 1).

In the first phase, the software system is parsed and pre-
sented as an attributed relational graph

���
[7], with nodes as

source code entities (i.e., file, function, type, and variable),
and edges as data and control flow dependencies (i.e., call,
define, set, update, and declare). The low-level relations
between entities are aggregated into more abstract relations
(i.e., call and use) between the entities which are then pre-
sented as the source model graph

�
(Figure 2). Using

data mining techniques, the entities in graph
�

are grouped
based on the association property, and the result is repre-
sented as a collection of domains, denoted as �����	��
��� ���

,
where each domain corresponds to a system entity.

In the second phase, a domain analysis is performed
on ��������
���� ���

, the association degrees among the system
components are measured, and a component graph

���
or

an association view is generated. In
���

a node is a system
component and an edge is the association value between
two components. In this form, a component refers to a
group of the system entities in the form of a file (to evaluate
a system design), or module and subsystem (to evaluate an
architectural recovery task).

In the third phase, the component graph
���

is analyzed
to provide metrics for assessing the quality of the software
system or the result of a recovery task, as well as categoriz-
ing the system design.

3.1 Graph based system representation

In this section, we briefly introduce the underlying con-
cepts of Attributed Relational Graph (ARG) that we use for
representing a software system based on the notation used
in [7].

An ARG is defined as a six-tuple
� �

��������� ���"!��$#��$% � , where � � & �('����*)+�+,-,.,-���0/�1 is the
set of attributed vertices (nodes), � �2&43 '�� 3 )+�+,-,-,.� 365 1 is
the set of directed attributed edges such that �879�;:<� , �
is an alphabet for node attributes, ! is an alphabet for edge
attributes, # and % are node and edge labeling functions
for returning node and edge attributes, respectively. In a
software system, typical node and edge attributes include:

= label: a string denoting a unique name for each entity
in the software system, (i.e., a full path name). The
edges do not have labels.
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= type: an identifier that classifies the nodes of a graph
into different categories for nodes (e.g.,

� ��� ��� ��� for
file, function, aggregate-type, global-variable1), and
also classifies the edges of a graph (e.g., call-F, use-
T, and use-V).

= location: two integers for file number and line number
in file for nodes and edges.

The allowed edges are defined using a triple (node-type,
edge-type, node-type), e.g., (F, use-T, T) meaning “function
uses type”. Examples of node and edge labeling functions
# and % in a software system include:
# ��('�� � = (“/u/.../analysis.c/rule analysis”, � �
	����
 �
indicating that node 10 with the label
“/u/.../analysis.c/rule analysis” is of type F (function)
and is defined in line 79 of the source file 5; and
% � 3 )�� � � %4� ���� �"� '�� � � �

(call-F, �������� ) with similar
interpretation.

Figure 2 represents the ARG of a software system with
19 nodes (entities) demonstrating the complexity of a small
system graph.

4 Association

Association in a graph is a property � among two or
more source nodes that share one or more sink nodes

1In the rest of paper we refer to aggregate-type and global-variable as
type and var, respectively.

(through graph edges). In this sense, the group of source
and sink nodes are denoted as associated group. The as-
sociation degree between the nodes of an associated group
is the number of sink nodes, and the association support is
the number of source nodes in that group. In Figure 2(c),
the group of nodes 1, 7, 10, 2, 13 are associated with asso-
ciation degree 3 (i.e., 3 sink nodes) and association support
2 (i.e., 2 source nodes); and the group of nodes 6, 1, 7, 10, 2
are associated with degree and support 2 and 3, respectively.

Revealing all the associated groups in a large graph is a
computationally expensive task. We use the Apriori algo-
rithm [5] originally presented in the data mining domain to
extract the groups with maximum association based on the
notion of frequent itemsets. A more detailed discussion on
the application of the data mining on reverse engineering
can be found in [17, 12].

4.1 Graph region and domain

A region
���� � ��� �� ��� �� � of a graph

� � ������� �
is a

subgraph of
�

(i.e., � �� 7 � and � �� 78� ) corresponding
to a node � ��� � �� . In a region

���� each node ��� �� � �
satisfies the association property � with respect to node � � .
We call � � the main-node of the region

�!�� .
Figure 2(b) represents region

��� ' of the source model
graph

�
that satisfies the association property, i.e., each

node of
��� ' is a member of an associated group with respect

to node 1. However, it is not clear what is the highest
association degree of each node with regard to node 1,
since each node can be a member of several associated
groups having a different association degree in each group.
The Apriori algorithm extracts all the associated groups
in a region which allow us to determine the maximum
association degree of each node with respect to the region’s
main-node. Figures 2(c) presents the application of the
Apriori algorithm on the region in part (b). The nodes of
a region are ranked according to the highest association
degree with the main-node (Figures 2(c)).

Entity domain
The domain of a node � � in graph

� � ������� �
, denoted

as " � , is defined as: “the collection of the graph nodes
that are associated with node � � along with their highest
association degrees with respect to � � ”. Formally,

" � � & ��� � �"��# � � �%$ � � ����# � � ��'& � � is main-node of���� & � � � � �� # � 1
Where, the function � � �� # � returns the maximum asso-

ciation degree2 of the node � # in the region
���� .

2In the rest of paper “association degree”of an entity refers to its “max-
imum association degree”.
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Figure 3, illustrates the transformation of the region
� '

into domain " ' . The transformation for each region is as
follows:

= Two new edge types shSink and shSrc (denoted as
sharing sink node and sharing source node, respec-
tively), are added to each region.

= Each edge ending to the main-node is replaced by an
edge starting from the main-node with inverse relation.

= A tree with main-node as the root and other region
nodes as the leaves is built, where, the leaves are the
domain of the root node with the relations indicated as
the tree edges.

The domain space of the graph
� � � ���"� �

, denoted as
domain(G) is a database of all node domains " � , which is
defined as:

��������
���� ��� �
� ���
�
��� ' "

�

4.2 Component

A system component is a named grouping of the system
entities, such as function, type, and variable, with the rela-
tion contains or defines to those entities. Each system entity
is contained in only one component. Each user defined en-
tity in an include file (i.e., global variable or aggregate type)

is contained in one component, based on the frequency of
usage by the functions in that component. Library entities,
defined using include files, can be viewed as an external
component defined by the environment. A component can
be a file or module of entities, or a subsystem of files where
the files are replaced by their contained entities. Please note
that the group of entities in a component is independent of
a group of entities in an entity domain.

Assume that the source model graph
� � � ���"� �

is a composition of � components. We define a system
component �%� ( 
	�
� ) as a graph

���� � ��� �� �"� ���� which
is a subgraph of

�
. The domain of a component � � ,

denoted as " �  , is a collection of the system entities that
exist in the domain of each entity � � , where the entity � � is
contained in component � � , Formally:

" �  � & �� � ��� # �$� � � ��������
���� ��� $ � �!� � �  & � # � � 1
To simplify the concepts, we continue our discussion us-

ing file as a component, where each file contains (defines) a
number of functions. In Figure 4, the domain of each entity
(function) in file �! is shown as the area in a closed curve.
The domain of file �! (i.e., " ��� ) is represented as the whole
area covered by all closed curves.

4.3 Component association

Having defined a component � � , we define the compo-
nent graph

� � � ��� � ��� � �
, where the nodes are system

components and the edges are component association
links (or simply association links) between components.
The association of the component � � with the compo-
nent � � , denoted as comp-assoc ��� � ��� � � is defined as:
overall association-degrees of the entities in the domain
of component �%� that also contained in component � � .
The component association is a directed relation, hence,
comp-assoc ��� � ��� � � �� comp-assoc ��� � ���%� � . The steps for
determining the component association are as follows:

Step 1:
Determining the effective domain of the component � �
onto the component � � , i.e., ! "����%� ��� � � , by applying a
noise filtering heuristic3. Generally, an entity domain "��
overlaps with many components. This filtering process
restricts the effect of each domain "�� (whose main-node is
in � � ) to a few components whose entities have non-trivial
overlap with " � . For example, in Figure 4(a), three
entity domains from file ��� have non-trivial overlap with
the entities in file � ) (highlighted with grey color) and
generate the effective domain ��� onto � ) , i.e., !!"�� ���4� � ) � .

3Because of space limitation the details are not discussed here.
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Step 2:
Determining the component association between every pair
of the components. The comp-assoc ��� � ��� � � is calculated
as: average of the total association degrees of every entity
in ! "����%�$��� � � 4. Formally,

comp-assoc ��� � ��� � � =
��� �����	� �
 ����������� ��� �����	������� ��� � �"!� � � �

Where,
$ !!"���� � ��� � ��$ is the number of the entities in

!!"����%� � � � � ; # �$# �&% �('$'��)���* � � is the sum of all association
degrees for the +

��,
entity in !!"�� �%� � � � � ; and

$ � � $ is the
number of entities in component � � . The unit of the comp-
assoc ��� � ��� � � is “association-degree per entity” (abbrevi-
ated as APE).

The association of a component � � on itself is defined
as comp-assoc � �%� � �%� � :

comp-assoc ��� � ��� � � =
� � ���-� �  
 �  �.��/��� ��� �����	���/��� ����� �0!� �  �

4Note that each node in ED 1.2-3546287"9 has different association degrees,
if it is a member of different overlappeddomains, as in Figure 4(a).

4.4 Association quantization

The above values for component association are dis-
tributed over a broad range that may be unmanageable. To
quantify the values of component association, we use four
ranges of values namely, strong, medium, loose, and weak
(denoted as strength of the association). Figure 4(b) demon-
strates a graphical quantization of the association values in
Figure 4(a). In this example, file 5 has strong-association
to files 2 and 4, medium-association to file 1, and low-
association to other files. The thickness of the arrows in
Figure 4(b) can be viewed as different colors for the links
among the files of a system within a graph visualization
tool.

5 Architectural design evaluation model

In this section, we introduce an architectural design
evaluation model in order to quantitatively evaluate the de-
sign of a software system based on its component interac-
tion properties. The proposed model: i) provides measures
of the component interactions based on abstract and mean-
ingful data-/control-dependencies; ii) categorizes the over-
all architectural design of the system into different design
properties; and iii) evaluates the modularity (quality) of al-
ternative designs or architectures.

5.1 Association views

We generate three almost orthogonal association views
for a system. Each view is generated by: i) maintaining the
relations pertaining to the desired view in the entity relation
database of the system and filtering out other relations; and
ii) generating the component graph

���
of the system. Each

resulting view is illustrated as a projection of the component
graph based on a particular property. The views are defined
as:

= Control passing view (F-view): representing the corre-
lation among the system components based on func-
tion invocation, which is illustrated by the component
graph

���: . The relation “function calls function” gen-
erates the F-view.

= Data exchange view (T-view): representing the corre-
lation among the system components based on aggre-
gate data types that are either passed as parameters be-
tween two functions or are referenced by a function.
This view excludes any parameter passing with simple
data types such as integer, real, boolean, and string,
since they fail to show enough evidence of correlation
between the functions. T-view is represented by the
component graph

���; and is generated using the rela-
tion “function uses types”.
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= Data sharing view (V-view): representing the correla-
tion among the system components based on sharing
the global variables by the functions. V-view is repre-
sented by the component graph

���
� , and is generated

using the the relation “function uses variable”, where
the variable is global with simple or aggregate type.

The composition of these views are also feasible by con-
sidering the collection of relations in different views. How-
ever, this composition is not the superposition of the in-
dividual views since adding extra relations to each view
may relate small associated groups of entities to generate
larger groups. The composition of T-view and V-view gen-
erates the component graph

���;�� , and the composition of
all views generates the component graph

���
. The individ-

ual views can be used to obtain useful information about
other design properties of the system as discussed below.

5.2 Design properties

In general, the architectural design decisions in devel-
oping a software system is affected by: i) corresponding
domain of the system, i.e., existing a reference architecture;
ii) employed design methodology, i.e., structured or object-
oriented; iii) limitation of the employed tool or platform
(e.g., memory limitation); and iv) software quality con-
siderations (e.g., maintainability, modifiability). We con-
sider three design properties for a system regardless of the
adopted design methodology and its architectural style. We
then relate these design properties to our proposed associ-
ation views. In the following part, the terms “dominant”,
“medium”, and “low” for describing a view, refer to the
relative comparison of the values of the three association
views in a system. The value for each association view is
defined as: average value of the component association per
component in that view (section 7.2 provides experimented
values). The design properties that we consider include:

= State sharing: in this design property, the components
(i.e., file, module, or subsystem) perform the desired
operation of the system through accessing and modi-
fying a number of global variables. In a system with
such design property, common coupling is the domi-
nant association among the components. This property
is manifested by a large number of references from dif-
ferent system functions to these global variables while
the other properties (mentioned below) are less visi-
ble. We distinguish such a property when a system has
a dominant V-view and low T-view and F-view.

= State passing: in this design property, the system state
is kept in data structures and the system operation is
performed by changing and passing these data struc-
tures among different modules. In such systems, the

coupling between components are mostly of the form
stamp and data couplings. A system with such a prop-
erty has a dominant T-view, medium F-view, and low
V-view.

= State encapsulating: in this design property, the state
of the system is encapsulated in the modules and the
system task is performed by invoking different services
to be performed by the modules using their own states.
This property is known to be the best from the under-
standability and maintainability point of view. In such
systems, the dominant couplings are control passing
and stamp coupling. A system with such a property
has a dominant F-view, medium T-view, and low V-
view.

A hybrid system may use different design properties for
different parts of the system. In Such cases, each view of
the system demonstrate a density of association links in a
different part of the system.

5.3 Modularity measurement

In section 4.3, we defined comp-assoc ��� � ��� � � and
comp-assoc ��� � ���%� � for two components � � and � � . In
this section, we define metrics to measure the quality of a
system design or its decomposition, in terms of modularity.
Each system component � � can be assessed by three
metrics such as: i) selfAssoc-degree ��� � � , to measure the
overall association of � � on itself; ii) assocOn-degree � � � � ,
to measure the overall association of � � on the rest of
the system; and iii) assocBy-degree � � � � , to measure the
association of the rest of the system on � � . The analogy
of these metrics to coupling and cohesion metrics are
cohesion-degree, couplesTo-degree, and coupledBy-degree,
respectively. Formally:

selfAssoc-degree ��� � � = comp-assoc ��� � � �%� �

assocOn-degree ��� � � =
/  ��� ���  ������ comp-assoc �.� �� � � � ! � � � � � ����  ������ � � � � �

assocBy-degree � �%� � � � / � 
� � ' comp-assoc ��� � � ���%� �

Where, ��� � ( � � � ) is the number of components � � � that
are the sink (source) of the association links from (to) com-
ponent � � in graph

���
. The unit for these formulas is

“association-degree per entity” (APE).
An explanation for the assocOn-degree ��� � � formula is

necessary. This formula first computes the average associ-
ation of � � on the other components linked to it (by merg-
ing all linked components into one component), and then
multiplies this average to the number of the linked compo-
nents. This method compensates for the size variation of the
linked components and produces a uniform value regardless
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of how the group of the linked components are divided into
� components with different sizes. An alternative formula
for assocOn-degree � � � � may directly add all component as-
sociations of the linked components which is sensitive to the
size variation of the linked components.

Having defined the above metrics for each system
component, the modularity-degree of the whole system
is defined as: the average of difference between “self-
association” and “association on others” for a component
in the whole system. Formally:

modularity-degree � ����� �
� � ��� �� ����� selfAssoc-degree �	� � ��


assocOn-degree �	� � ��$ ��� $
The above metrics allow us to assess the design quality of
a software system as well as the quality of the system de-
composition based on the component association. In the
following sections, the experimental results of this evalua-
tion model are discussed.

The value for the modularity-degree can be negative or
positive based on the weights of the overall self-association
and association on others for the whole system files. In or-
der to normalize the values for the modularity-degrees of
different systems, we need a reference system to provide a
reference modularity value. However, since we have not
experimented with a large number of systems yet, for this
paper we present a modularity comparison of a group of
systems with each other.

6 Software architecture recovery tool

We have implemented a reverse engineering tool (Al-
borz), as a user assistant, to recover the architecture of a
software system as cohesive components. The Alborz tool
has been built in the Refine re-engineering environment [16]
and uses the built-in parsers to parse the software systems,
and the built-in parser generator to design a proprietary lan-
guage called Architectural Query Language (AQL). The
tool provides two complementary techniques for architec-
tural recovery based on:

= Component association technique, where the tool pro-
vides a quantized component graph of the system com-
ponents and association strengths, and the user visual-
izes the graph using a graph visualizer tool and clusters
the components into larger subsystems. The manual-
blocks of an AQL query are used to define the result-
ing components for the tool to be further analyzed.
The result of the system decomposition into subsys-
tems also provides a graph-based architectural pattern
for the system to be used by the second technique.

= Pattern matching technique, where the user defines a
graph-based architectural pattern of the system compo-
nents and their interactions based on: domain knowl-
edge, system documents, or component association
properties. In an iterative recovery process, the user
constraints the architectural pattern and the tool pro-
vides a decomposition of the system entities into com-
ponents that satisfy the constraints. The query-blocks
of an AQL query are used to define a constraint archi-
tectural pattern [18].

In both techniques, the tool provides metrics to assess the
modularity quality of the software system and its decompo-
sition into subsystems. The analysis techniques discussed in
this paper are used as the first step in an iterative scenario
for architectural recovery in each technique. These analy-
ses (complemented with the system documentation) provide
enough insight into the design of the system under analysis
to enable the user to decide on the results at each iteration
and the way to proceed with the next iteration.

The input to the Alborz tool is the entities and relation-
ships of the software system which are extracted from either
of the two sources: i) AST of the software system generated
by the Refine’s built-in parser; or ii) RSF format files gen-
erated by the Rigi parser. The tool provides the result of
the architectural analysis into two forms: i) HTML pages
for the recovered components, tool generated metrics, and
source code, to be visualized by a Web browser such as
Netscape; and ii) graphs of boxes and arrows to be visu-
alized by the Rigi tool, where the boxes are the analyzed
components and the arrows are either the resource interac-
tion (i.e., import/export) between the components or their
association strengths.

7 Experiments

In this section, we apply the proposed evaluation tech-
nique on five software systems. First, the modularity quality
of the software systems are discussed, and next, the associ-
ation views of a system are presented and the overall design
properties of the five systems are compared.

Our experimentation platform consists of a Sun Ultra 10
(440MHZ, 256M memory, 512M swap disk). The experi-
ments have been performed on systems written in C, includ-
ing: CLIPS (expert system builder) [2], Xfig (drawing tool)
[1], BASH (Unix shell) [3], Apache (Web server) [4], and
Weltab (election system).

7.1 Modularity assessment

The tool provides three metrics selfAssoc-degree ��� � � ,
assocOn-degree ��� � � , and assocBy-degree � � � � for individ-
ual files of the system, as well as the distribution of the
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Figure 5. (a) and (b) Comparison of file dis-
tribution versus component-association val-
ues for CLIPS, Apache, and Bash. (c) The
modularity-degrees of five experimented sys-
tems.

files versus these metrics. The diagrams in Figures 5(a) and
(b) compare the file distributions of three systems CLIPS,
Apache, and Bash in one scale, versus two of the above
metrics. The modularity-degrees of CLIPS, Apache, and
Bash are: -11.6, -8.75, and -5.58, respectively.

In all three systems, on average the degree of association
of a file to other files is higher than the degree of its self-
association, causing a negative value for the modularity-
degree of each system. The higher value for modularity-
degree means more modular system. In comparison, the
CLIPS files have higher value of assocOn-degree than other
two systems which makes it less modular than the others.
The Bash system is the most modular system among the
others.

The table in Figure 5(c) presents a comparison of the
modularity-degrees for five experimented systems. The
Xfig system has the lowest modularity-degree. As will be
discussed in the next section, the design of the Xfig system
is towards using a large number of global variables (1356
variables), making the system less modular. The Weltab
system has the highest modularity-degree among others.
The component graph of the Weltab system is shown in
Figure 6. The system contains of 38 files: i) two library
files, i.e., wellib.c and baselib.c each with 21 functions;
and ii) 36 other files, each with one to four long functions.
The library file wellib.c is highly cohesive, and all other
36 files use the services provided by these two library
files and have almost no association links between each
other. This is verified by investigating the Weltab’s source

Figure 6. The component graph of the Weltab
system, with two library files as the core of
component associations.

code. The uncommon design of the Weltab system makes
it modular since each file depends on only two library files
which themselves are cohesive. Therefore, the change prop-
agation is restricted to the modified file and two library files.

7.2 Design properties

In the view-based architectural design evaluation model,
discussed in section 5, the software system is considered
from almost orthogonal views which are used to categorize
the overall design of the system into a set of proposed de-
sign properties. Figure 7 illustrates three association views
(parts a,b,c) and the compositional view (part d) of the
CLIPS system. In each part, the files are grouped based
on the strength of the association links between the files. In
the compositional view, this grouping of the files produces
four subsystems for CLIPS.

In order to highlight the differences in each view of Fig-
ure 7, only the files with strong and medium association
strengths are shown. Except few cases, each view contains
different sets of files and links which indicate the dominant
property in each group of files. For example, group 1 in
F-view is the same as group 3 in T-view which means this
group of files are highly correlated through passing of ag-
gregate data structures and also control passing. This sub-
system is called object and demonstrates the state encapsu-
lation property in its design. An investigation of different
views reveals the contribution of each view in the composi-
tional view (FTV-view). For example, the object subsystem
discussed above is seen as the subsystem 2 in FTV-view;
group 2 in F-view is seen as a part of subsystem 1 in FTV-
view; group 1 in V-view contributes in generating the sub-
system 1 in FTV-view, and represents the dominant cou-
pling, i.e., common coupling, in the whole system. There-
fore, comparison of different views with the compositional
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Figure 8. The evaluation table for comparing
association views and design properties of
five systems.

view provides additional knowledge about the design prop-
erty of different parts of the system under investigation.

In Figure 8, the evaluation table for all five experimented
systems is shown. In this table, the average of association
value for each association view is used to assess the affect
of that view in the overall design property of the system.
In each case, one or two views are dominant which deter-
mine the overall design property. For the CLIPS system, the
V-view and T-view are dominant, therefore CLIPS design
is categorized as using both state sharing and state passing
properties. As was mentioned earlier, the object subsys-
tem of CLIPS has been designed with state encapsulation
in mind, therefore, CLIPS has a hybrid design property.
The association views for the Apache system does not com-
pletely match with our categorization, but it is toward state
encapsulation property. For the Bash system, the values for
views match with our definition of state passing property.
Finally, both Xfig and Weltab systems have dominant V-
views which categorize them as state sharing design. It is
seen that the value of the composition view (FTV-view) for
each system is higher than each individual view. This is be-
cause combining the relations of the three views produces
larger associated groups of the system entities, hence the
average association value increases.

The min-support column in Figure 8 represents the em-
ployed minimum support for generating the data mining as-
sociations. Although, the ideal case is to use the minimum
support 2, but the size of the generated frequent itemsets
explode in systems with many groups of entities that are
highly associated. In such cases, we have to increase the
minimum support in order to make the algorithm tractable.
The case of Weltab system with minimum support 27 is rare
and indicates the existence of very large associated groups
of functions in that system.

9



8 Conclusion

In this paper, we proposed an architectural design eval-
uation model to assess the design properties of a system
based on the association-views of the system. We also eval-
uated the modularity-degree of the software system. The
model is based on the notion of component association as
a generalization of the coupling and cohesion metrics at the
architectural level of a system. The proposed system analy-
sis and evaluation techniques assist the user to obtain insight
into the system under analysis and provides means to assess
the result of the recovery which is essential in performing a
reverse engineering task.

The techniques are integrated into a tool which con-
veniently presents the results of the analysis as HTML
pages and graphs to be visualized by Rigi tool. A number
of experiments with five middle size systems indicate the
accuracy and scalability of the approach, and the usefulness
of the Alborz tool in producing meaningful metrics. This
work has been performed within the framework of the
Consortium for Software Engineering Research and in
cooperation with IBM Toronto Laboratory, Center for
Advanced Studies.

Acknowledgment: I would like to thank Dr. Kostas
Kontogiannis for his fruitful suggestions to enhance this pa-
per.
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