
Alborz: A Query-based Tool for Software Architecture Recovery
�

Kamran Sartipi

Department of Computer Science, University of Waterloo,
Waterloo, ON. N2L 3G1, Canada

ksartipi@math.uwaterloo.ca

Abstract: Alborz is a user assisted reverse engineering
tool designed for analyzing and recovering the architecture
of a software system in the form of cohesive modules and
subsystems. The tool’s operation is based on techniques
from the area of data mining, pattern matching, and cluster-
ing (Figure 1).

1 System analysis

The Alborz tool provides facilities for analyzing the soft-
ware system in order to obtain insight into the system before
starting the recovery process. These analyses are based on
the notion of inter-/intra-component association (as approx-
imation for coupling and cohesion properties between sys-
tem files). The association is a property among highly re-
lated groups of entities in term of the maximum number of
shared entities in the groups. This technique allows to mea-
sure the modularity of the software system as an indication
of the quality of the system design. Also, a view-based ar-
chitectural design evaluation model allows to categorize the
system design into different design properties.

The tool provides two complementary techniques for
software architecture recovery as followings:

2 Pattern matching technique

In a nutshell, the user defines a graph-based architectural
pattern of the system modules (subsystems) and their inter-
actions based on: domain knowledge, system documents,
or tool-provided clustering techniques. In an iterative re-
covery process, the user constraints the architectural pattern
and the tool provides a decomposition of the system entities
into modules or subsystems that satisfy the constraints.

The user develops a hypothesis about the architecture of
the system that can be viewed as a graph of modules and

�

This work was funded by IBM Canada Ltd. Laboratory - Center for
AdvancedStudies (Toronto) and the National Research Council of Canada.

mG

graph-regions

Generating
database of

using
Data Mining

(PRE-PROCESS)
Architecture

&
entities

un-grouped

(DISTRIBUTION)

(4)

GA(PATTERN MATCHING)

entities among
Matching

the constrained form

AQL

Matched
graph

Domain & Document

of AQL query

regions against
blocks of entities

query

User relocates

Tool distributes

S(G)

Region
database

G

(1)

(3)

(2)

(QUERY GENERATION)
Generating

graph pattern
using Clustering

Software
system

Figure 1. The framework for query-based soft-
ware architecture recovery.

interconnections1 (i.e., architectural pattern), where each
module (one node of graph) represents a group of place-
holders for the system entities (i.e., functions, types, vari-
ables) to be instantiated, and each bundle of interconnec-
tions (one edge of graph) between two modules represents
data-/control-dependencies between two groups of place-
holders in two modules. The minimum/maximum sizes and
the types of both placeholders and the interconnections are
considered as free parameters to be decided by the user (re-
specting the allowed relation between two entities).

This yet un-instantiated module-interconnection repre-
sentation (can be referred to as conceptual architecture) is
directly defined for the tool, using a proprietary language
that we call architecture query language (AQL). Therefore,
a query in AQL represents a macroscopic graph-form pat-
tern for a part or the whole of the system architecture to be
recovered. The task of the tool is then to search through
the software system (again represented as a graph of system
entities and relationships) to find an optimal match between
the module-interconnection pattern in the AQL query and
the graph of the system.

Since finding the exact matching may be impossible, we
allow inexact matching by maximizing an association-based

1Similarly, at the higher level architecture recovery a graph of subsys-
tems (consisting of files or modules) and their interconnections are used.

score function in a branch and bound search algorithm.
Therefore, we define the architecture recovery as a graph
matching problem, in which the matching process searches
to find a series of graph edit operations (i.e., node or edge
insertion and deletion) with minimum cost that if applied
on the expanded form of the AQL graph, the resultant graph
matches with a subgraph of the system graph.

Considering the number of entities in a medium size soft-
ware system (usually more than 1000 entities), searching
the whole search space is an intractable problem. Hence,
we must restrict the search domain for each module in the
query to a group of eligible entities. In doing so, we pre-
process the graph of the software system and decompose it
into regions based on the association property, and then re-
strict the search for each module to one (or more) of these
regions. Therefore, the quality of the recovered modules
depends on the proper selection of the region(s) for each
module in the AQL query. These regions can be determined
by the following clustering techniques.

3 Clustering technique

The tool provides two clustering techniques whose re-
sults can also provide an initial graph pattern for the pattern
matching technique.

Automatic clustering is a supervised optimization clus-
tering which incrementally recovers the cohesive modules
or subsystems from a database of graph regions. This clus-
tering technique also uses AQL query to define a number of
uninstantiated modules or subsystems. At any stage of the
clustering, a heuristic provides a ranked list of regions for
the next module recovery to be chosen by the user, based
on: quality of the remaining regions and minimum over-
lap with already recovered modules. Different similarity
metrics such as association among highly related groups of
entities, Jaccard metric based on shared functions, types,
variable, or all, are supported.

Manual clustering is a visual aid for the user to collect
the files or modules into subsystems based on the catego-
rization and mapping of the association values between files
(or modules) into colors, which represent the strength of the
association between them. A stepwise clustering operation
starting from strong association links and continuing with
medium, loose, and weak links, allows a manual clustering
of the system files into subsystems as well as viewing the
structure of the files. A graph visualizer tool such as Rigi is
used to view this graph.

4 Tool

The Alborz tool has been implemented in the Refine
reengineering environment and uses the Refine’s parser
generator tool to design the AQL language.

Input/output: the input to the Alborz tool is an informa-
tion base that corresponds to the entities and relationships of
the software system in the form of an AST or RSF file. The
tool provides the result of the architectural recovery into two
forms: i) HTML pages for the recovered components, tool
generated metrics, and source code, to be visualized by a
Web browser such as Netscape; and ii) graphs of boxes and
arrows to be visualized by the Rigi tool, where the boxes
are the analyzed components and the arrows are either the
resource interaction (i.e., import/export) between the com-
ponents or their association strengths.

AQL query: the AQL query defines the pattern that is
to be matched against the information base that represents
the software system. Each module of the query uses one or
more entities as fixed entities to appear in the result of the
recovery, namely main-seed(s) which determine the corre-
sponding region(s) to be searched for the module, and seeds
which just appear in the result without search. In the fol-
lowing a part of an AQL query, consisting of a subsystem
S1 of files and its interconnection links to other subsystems
is shown:
BEGIN-AQL
SUBSYSTEM: S1

MAIN-SEEDS: files e edit, e update
IMPORTS:

RESOURCES: rsrc ?IR,
rsrc ?R1(6 .. 10) S2,
rsrc ?R2(12 .. 20) S4

EXPORTS:
RESOURCES: rsrc ?ER,

rsrc ?R3(10 .. 15) S2,
rsrc ?R4(1 .. 5) S3

CONTAINS:
FILES: file $CFI(7 .. 10),

files e edit, e update
RELOCATES: NO:

files e allign, u scale TO: S3
END-ENTITY

The above AQL fragment is interpreted as: the subsys-
tem S1 which will be instantiated with seven to ten files,
and definitely contains the files e edit and e update (main
seeds), imports minimum six and maximum ten resources
(?R1) from subsystem S2. A similar interpretation holds
for the EXPORTS and CONTAINS sections. The notations
?IR and ?ER in the import and export parts denote uniden-
tified quantities of links between the current subsystem and
any other subsystems in the query that have not been speci-
fied by the architectural pattern, therefore, are not matched
by the matching algorithm.

So far, we have experimented with systems such as:
Xfig, CLIPS, Bash, Apache, and Weltab.

Acknowledgment: I would like to thank Dr. Kostas
Kontogiannis for his supports to build this tool.

2

