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Abstract

Most approaches in reverse engineering literature gen-
erate a single view of a software system that restricts the
scope of the reconstruction process. We propose an or-
chestrated set of techniques and a multi-view toolkit to re-
construct three views of a software system such as design,
behavior, and structure. Scenarios are central in generat-
ing design and behavior views. The design view is recon-
structed by transforming a number of scenarios into design
diagrams using a novel scenario schema and generating
an objectbase of actors and actions and their dependen-
cies. The behavior view is represented by different sets of
functions that implement different features of the software
system corresponding to a set of feature-specific scenarios
that are derived from the design view. Finally, the structure
view is reconstructed using modules and interconnections
that are resulted by growing the core functions related to
the software features that are extracted during the behavior
recovery. This orchestrated view reconstruction technique
provides a more accurate and comprehensive means for re-
verse engineering of a software system than a single view
reconstruction approach. As case studies we applied the
proposed multi-view approach on two systems, Xfig draw-
ing tool and Pine email system.

KEYWORDS: Recovery; Multi-view; Design; Behav-
ior; Structure; Scenario; Schema; Pattern mining.

1. Introduction

Software systems and their platforms become costly to
maintain for several reasons, such as: aging; lack of updated
documentation; error-prone operation caused by patches
and feature improvements; cease of platform support from
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the provider; and adoption of new technologies. No matter
what the cause is, the target system would turn into a legacy
system where in most cases the organizations are doomed to
perform a maintenance operation (reverse- / re-engineering)
to keep their software system operational. In this context,
precise understanding of the design, behavior, and structure
of the system, as different views of the software systems,
are crucial in maintaining the software assets.

Software architecture views are the result of applying
separation of concerns on a software engineering activity
such as software development or reverse engineering. Re-
verse engineering research community have recently paid
more attention to amalgamation of static and dynamic as-
pects of software systems [16, 10, 9] that extract structure
and behavior views, respectively. Nevertheless, static analy-
sis at different levels of abstraction (e.g., source code analy-
sis, or architectural recovery) is still considered as the main
focus for maintenance activities. One main reason for this
is the completeness of the static information about the sys-
tem as opposed to that of dynamic analysis which is based
on execution of a limited number of task scenarios. On the
other hand, dynamic analysis provides a link between the
software functionalities (i.e., software features) that are rep-
resented by task scenarios and the source code elements that
implement those functionalities [5]. This valuable informa-
tion usually can not be obtained easily by static analysis. In
addition to the aforementioned two views, design view as
the third view provides a high-level representation of soft-
ware artifacts and their dependencies which allows for con-
ceptual understanding of the software system. Design view,
when integrated with structure and behavior views provide
a guided architectural reconstruction process.

In this paper, we propose a multi-view framework to re-
cover three views of a software system that are orchestrated
by the task scenarios. The multi-view model establishes
the relations between the three views: design, behavior, and
structure, where task scenarios are the key elements for col-
laboration of the three views. In the presented framework,
a set of scenarios are generated using the evidences such



as system documentation or user-system interaction. The
scenarios are parsed to generate a design view of the soft-
ware system. For the behavior view recovery, the user in-
vestigates the design view and selects specific features and
corresponding scenarios to identify the groups of core func-
tions that implement these features. The application of a
sequential pattern discovery technique generates execution
patterns as the means to identify the implementation of the
software features within the source code. In a further step,
each group of core functions that implement a feature will
be used in the structure view recovery in order to generate
one or more cohesive modules of functions using an opti-
mization clustering algorithm and data mining association
properties.

The proposed multi-view approach in this paper will as-
sist the maintenance activities of software systems in differ-
ent ways, such as: i) providing deep insight into the design
properties of the implemented software system; ii) assess-
ing structural merit of a software system through feature
scattering among system files [13]; and iii) defining precise
links among the software features in design view and their
implementations in system files. The contributions of this
paper include the reverse engineering of three orthogonal
views of a software system, i.e., design, behavior, and struc-
ture, by the means of task scenarios to orchestrate and relate
the results of a view to extract the relevant information from
another view. The proposed multi-view framework is sup-
ported by a toolkit namelyAlborz [14] that is built within
the Eclipse plug-in environment.

The organization of the paper is as follows. Section 2
provides the related literature with respect to multi-viewre-
covery. In Section 3 the proposed multi-view model and
process are discussed. In Sections 4 and 5 and 6 the em-
ployed techniques for recovery of the three views: design,
behavior, and structure, are presented. Section 7 presents
a case study on the Xfig drawing tool. Finally, Section 8
concludes the paper.

2. Related work

The proposed research in this paper is related to the ap-
proaches in software architecture view recovery that extract
more than one view of the software system.

Vasconcelos et al. [17] present a dynamic analysis ap-
proach that extracts the process and scenario views (from
4+1 views) of Java applications in the form of UML se-
quence diagram and use-case scenarios. These views com-
plement the extracted static view through integration within
the Odyssey environment [2].

Riva et al. [9] propose a technique for architecture recov-
ery using combined static and dynamic information. Their
technique is based on choosing architectural concepts and
applying abstraction techniques on source code to manip-

ulate the concepts in architectural level. Their technique
allows for creating domain-related architectural views for
the architecture description of the system. Similarly in our
approach, we use scenarios with design-derived features to
guide the multi-view recovery process.

In a similar context, Deursen et al. [16] propose a view-
based software reconstruction framework that provides a
common framework for reporting reconstruction experi-
ences and comparing reconstruction approaches.

Richner et al. [8] propose an approach to extract static
and dynamic views from Java programs. The static view is
generated from class files and visualized using Rigi reverse
engineering environment. The dynamic view which is rep-
resented as scenario diagrams, are attached to the static Rigi
graph. The overlapping information between two views
forms a connection for information exchange between the
views.

Overall, the significance of our technique is evinced in
that we generate three views of a software system (design,
behavior, and structure) where the task scenarios play a key
role by guiding the multi-view recovery process.

3. Proposed multi-view framework

The proposed framework consists of amulti-view model
and amulti-view processthat are illustrated in Figure 1 and
Figure 2, respectively. The multi-view model represents
the relations between the three viewsdesign, behavior, and
structurein a class diagram, wherescenariosare the key el-
ements for extraction and collaboration of the three views.
The multi-view process in Figure 2 illustrates the overall
mechanism to extract three views of a software system. In
this process, a set of task scenarios are generated using the
evidences derived by the user’s knowledge of the applica-
tion domain, system-user interaction, available high-level
system documents, and user manuals. The structure of sce-
narios must conform with a regular expression syntax. The
structured scenarios are parsed to generate a design view
of the software system that is represented by two types of
diagrams,entity-relationship diagram (E-R)andactivity di-
agram. These diagrams represent the implemented func-
tionality and the major system data that are manipulated by
the activities. For the behavior view recovery, the user in-
vestigates the design view and selects specific features in
order to be used by the behavior recovery process. For each
specific feature, a set of task scenarios are defined that share
that feature. The execution of this set of scenarios on thein-
strumented1 software system generates execution traces that
are processed to extractexecution patterns. Each execution
pattern is a sequence of source code function calls that are

1Instrumentation refers to the process of inserting particular pieces of
code into the software system (source code or binary image) to generate a
trace of the software execution.
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Figure 1. Proposed multi-view model(class di-
agram) representing the relations between
three views.

common among the execution of all scenarios in this sce-
nario set. Iterating this process for a collection of features
allows us to identify the realization of software features in
the source code, namelycore functions. Finally, each group
of core functions that implement a feature will be used as a
core of a cluster in the structure view recovery in order to
produce a larger group of cohesive functions. The structure
view takes advantage of the association relations among the
functions to determine the proximity of other functions with
the core of each cluster that consequently generates clusters
that represent the software components.

The overall process in this multi-view framework allows
us to relate abstract design diagrams to the concrete imple-
mentation of the functional elements of the design view. It
should be noted that each view in this work (design, behav-
ior, structure) has its own application that will be discussed
in the corresponding section. However, this paper focuses
on the collaboration among these three views that is orches-
trated by the task scenarios.

4. Design view generation

In this section, we discuss the steps for transforming
the knowledge embodied in the text of task scenarios
into design related information represented by two types
of diagrams, i.e., entity relationship diagram (E-R) and
activity diagram, using the process illustrated in Figure
4. In a nutshell, the design generation approach generates
and structures a set of task scenarios and then uses a novel
scenario domain modelto parse the composed scenarios
into ingredients of the adopted design diagrams. The
proposed process consists of three steps, as follows.
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Figure 2. Proposed multi-view processto extract
three views of a software system.

Design step 1(scenario generation). Task scenarios are
the main elements that orchestrate the proposed multi-view
architecture recovery framework. In this paper, we adopt
a structured text-based representation for scenarios that
conform with the regular expression syntax in Figure 3. In
this scenario syntax each scenario consists of a sequence
of one or moreActors, Actions, andWorking Information,
each of which can have between zero or moreConstraints
that will be defined in Design step 2 below. In this form
we can generate syntactically correct scenarios which will
be further decomposed using the scenario domain model
to populate the objectbase in Design step 2 and generate
design diagrams in Design step 3. These scenarios will
be further used to populate a knowledge-base ofscenario
templatesto reuse the captured business rules in a future
similar case. The sources for scenario generation are avail-
able evidences such as: system user interface, user-manual,
and expert-user’s knowledge of the system.

Design step 2(scenario decomposition). The class dia-
gram representation of the proposed scenario domain model
is presented in Figure 5. This domain model is intended to
provide the classes of information in scenarios from differ-
ent application areas. We have applied this model on three
systems, including a fast-food restaurant system, Xfig draw-
ing tool, and an automatic banking machine (ABM) system.
The text of the structured scenarios is parsed using this do-
main model and the resultant instances of classes in the do-
main model are stored as a record in the objectbase. The
schema of the objectbase has an entry for each class of the
domain model as well as an index entry as its primary key.

As shown in Figure 5, in this model every instance of
theScenarioclass is composed of one or more instances of
Actor, Working information, andActionclasses, and zero or
more instances ofDependencyandConstraintclasses.
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Scenario : {Actor + {Constraint}0..M}1..N + {Action + {Constraint}0..M}1..N + {Working information +
{Constraint}0..M}1..N

Figure 3. Regular expression syntax for scenario generatio n, where “+” and “0..M” (“1..N”) represent
composition and range, respectively.
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Figure 4. Design view generation based on
task scenarios and scenario domain model.

Below, the classes of the proposed scenario domain
model are introduced:

• Actor: an actor is a “human” or a “system” or a “com-
ponent of a system” that interacts with other actors dur-
ing the execution of the scenarios.

• Action: an action is an activity that is performed by
an actor during the execution of the scenarios. Gen-
erally, an action manipulates an instance ofWorking
information- which is explained shortly. Actions can
be categorized into three different types ofInput, Inter-
nal, andOutput, based on the scope of their working
information manipulation.

• Working information: working information refers to
the information that is manipulated (exchanged, trans-
ported, communicated, operated on, stored in the sys-
tem, etc.) by the scenario’s actor during the execution
of the scenario.

• Dependency: a dependency refers to a relation be-
tween two instances of the classesActor, Action, and
Working information. During parsing a scenario, de-
pendencies are established both between the newly
generated instances of domain model classes (corre-
sponding to the current scenario), and also between
these newly generated instances and the previously
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Figure 5. Scenario domain model that is used
to parse a scenario and populate an object-
base.

stored instances in the objectbase. A dependency can
be of typeData dependencyor Action dependency.

The proposed scenario domain model in Figure 5
includes aConstraintclass. This class contains information
about the constraints that may be associated with instances
of each subclass ofData, Action, andDependency. Exam-
ples of these constraints include:capacity, value range,
ordinal, timing, privilege, etc.

Design step 3(design generation). In this step, Entity-
Relationship and Activity diagrams are generated using the
instances of the classes of the domain model that are stored
in the objectbase.

• Entity-Relationship diagram. Instances ofActor and
Working informationclasses in the objectbase are can-
didates for entities and their corresponding attributes in
E-R diagram; and instances of different subclasses of
Data dependencyare candidate relationships that con-
nect different entities and assign attributes to entities.

• Activity diagram. Instances ofAction class are can-
didate activities in the activity diagram; and the in-
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Figure 6. Behavior view recovery based on
execution patterns to identify feature func-
tionality in the source code.

stances of different subclasses ofAction dependency
relate other elements of the activity diagram such as:
edges, diamonds, joins, and forks.

Due to space limitation the details of generating E-R and
activity diagrams are not presented in this paper.

The proposed design view generation from task scenar-
ios is a systematic approach to transform the informal in-
formation from task scenarios into well-formed design di-
agrams. In the next section, we discuss how the diagrams
of design view generation are used to provide features and
scenario sets to be fed into behavior recovery of the system.

5. Behavior view recovery

Figure 6 illustrates the steps for recovery of a software
system’s behavior view as a means to identify the realiza-
tion of the software features by the source code functions.
The process for behavior view recovery exploits the relation
discovery power of data mining techniques. The steps of
this process are as follows.

Behavior step 1(execution trace extraction). As men-
tioned in Section 3, important features of a software system
are identified as a result of the design generation process.
The generated activity diagram assists us to define a set of
relevant scenarios that examine a single software feature.
We call this set of scenarios afeature-specific scenario set.
For example, in the case of a drawing tool software sys-
tem, a group of scenarios that share the “move” operation to
move a drawn figure on the computer screen would consti-
tute such a feature-specific scenario set. Next, the software
system is instrumented in order to produce execution traces
when a task scenario is executed on the system. A major
obstacle in run time analysis of a system is the large size of
the generated execution traces that makes the task of analy-
sis a daunting one. The effective trace of functions for the
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Figure 7. A collection of 7 execution traces.
Different types of shaded areas correspond
to three execution patterns.

intended scenario is cluttered by a large number of func-
tion calls from operating system, initialization / termination
operations, utilities, and also repetitions that are caused by
the program loops. To make the large size of the generated
traces manageable, we remove all redundant function calls
caused by the program loops. This operation contributes in
scalability of the approach.

In the remaining of this section, we describe the appli-
cation of sequential pattern mining technique to discover
groups of functions in execution traces that correspond to
certain system features. In the data mining literature, the
sequential pattern mining technique is used to extract fre-
quently occurring patterns among the sequences of cus-
tomer transactions [3]. In this paper we adopt the above
technique in order to extract frequently occurring patterns
of function calls among program execution traces. The ex-
tracted sequential pattern consists ofonly contiguous parts
of an execution trace and the interleaving of other functions
within the patterns are not allowed. This characteristic pro-
duces meaningfulexecution patternsthat correspond to core
functions implementing specific features of the system.

In the proposed approach we distinguish between two
types of patterns:common execution patternsandfeature-
specific execution patterns. The categories of the execution
patterns and the proposed extraction mechanism in our ap-
proach are briefly discussed below:

• Common execution pattern. A common pattern exists
in the majority of feature-specific scenario sets that
are executed on the system. In order to extract such
a pattern, we should use a filtering mechanism to fil-
ter out the feature-specific patterns from this group of
patterns. An example of a common pattern is the pat-
tern of function calls that is produced by initialization
component of each program execution.

• Feature-specific execution pattern. Each pattern in this
category corresponds to the core functions that imple-
ment the targeted feature of a feature-specific scenario
set. Such a pattern exists in the majority of traces in a
feature-specific scenario-set. As mentioned above, the
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common patterns are also extracted along with feature-
specific patterns. The separation of these two types of
patterns are discussed later in this section.

Figure 7 illustrates a collection of seven execution traces
and their corresponding extracted execution patterns that
include both feature-specific and common patterns.

Behavior step 2(execution pattern analysis). We em-
ploy a strategy to focus on the execution patterns corre-
sponding to specific features within the scenario sets. In
this context, we exploit the structural characteristics ofthe
concept lattice [15] in order to separate the functions ex-
clusive to a specific feature from the group of functions that
implement the common features. In the context of a concept
lattice, attributes that are extensively shared among mostof
the objects appear in the upper region of the lattice and vice
versa. In our setting for concept lattice analysis, an object is
a feature of a feature-specific scenario set and an attributeis
a function that participates in the execution patterns of this
feature-specific scenario set. Since common functions are
executed through almost every feature-specific scenario set,
these functions appear in upper region of the lattice. On the
other hand, functions that are exclusive to certain features of
the software are located in lower region of the lattice. As a
result, the core functions that exclusively implement certain
features of the system are identified.

In addition to the main application of the proposed
behavior recovery, i.e., identifying the software feature
implementation in the source code, this approach has
been used for: i) measuring the scattering of the software
features among the structural modules; ii) assessing the
structural cohesion of the software modules; and iii)
visualizing the functional distribution of specific features
on a lattice [13]. In the next section, we discuss how the
result of the behavior view is used to provide semantics to
the structure view recovery of the system.

6. Structure view recovery

Figure 8 illustrates the steps for recovery of a software
system’s structure view that generates cohesive software
modules from source code functions. The process for
structure recovery consists of two major steps asfact
extraction and module reconstructionthat are briefly
described below. We use Alborz reverse engineering toolkit
[14] that provides a supervised optimization clustering
technique.

Structure step 1(fact extraction). In the fact extraction
step, the software system is parsed to generate anabstract
syntax tree(AST) that contains all the constructs corre-
sponding to the programming language of the software
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tering.

system, e.g., C. Using agraph schema[11] that defines
architectural level entities for recovery of software modules
(i.e., function, aggregate types, and global variables)2

and their relationships (i.e., function-call, type-use, and
variable-use), we produce a graph representation of the
software system (namelysource graph) and store it in a
fact base. Considering the number of entities in a medium
size software system (usually more than 1000 entities),
searching the whole search space (source graph) is an
intractable problem. Hence, we must restrict the search
domain for each module to a group of eligible entities.
We apply association-based data mining algorithms on the
source graph and consequently decompose the source graph
into smaller regions (search domains) where each search
domain consists of a number of entities that are associated
with an entity in that domain, namelymain-seed. We then
restrict the search for each module to one (or more) of these
regions.

Structure step 2 (module reconstruction). We perform
a supervised optimization clustering technique that incre-
mentally generates software clusters as cohesive modules
of functions that are interconnected through function im-
ports and exports. Each module consists of one or more
main-seeds as the core functions of the module and a sub-
optimal version of theA∗ search algorithm is used to collect
the group of highly associated functions into a module. The
search space for a module is restricted to the functions in the
search domain(s) of the corresponding main-seed(s). We
define an association-based similarity metric that is based

2The focus of this work is on the function-level analysis, however the
toolkit that we use can perform file-level analysis as well.
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on the group of entities with maximum association prop-
erty. The maximal association property is defined in the
form of a maximal set of entities that all share the same re-
lations to every member of another maximal set of entities.
Hence, these groups possess a higher-degree of cohesive-
ness and are suitable to form clusters based on an entity
association similarity metric. Such a similarity metric en-
codes the structural property of the groups of maximally
associated entities.

The structure recovery without the collaboration of the
proposed multi-views relies on the tool-provided facilitates
that generate an ordered list of highest qualified main-seeds
for the next module recovery. While this method produces
very high cohesive modules of functions, it can not produce
meaningful modules since the core functions are selected
based on the static structural properties and not the func-
tionality of the main-seeds. Whereas, the proposed multi-
view collaborative approach provides core functions as the
module main-seed(s) that implement meaningful software
features. Furthermore, these software features have been
derived from design diagrams that stem from the software’s
functional requirements. In Figure 8, the core functions
from behavior view are used to produce semantically mean-
ingful clusters as system components.

Clustering techniques can be classified as “automatic or
supervised” techniques [7] and “user-centric” techniques
[12]. These techniques attempt to restructure the origi-
nal system into a new system whereby it is composed of
higher quality modules in terms of high-cohesion and low-
coupling characteristics. A clustering technique must meet
specific requirements of the new environments for software
architecture recovery, including: user involvement to guide
the process according to domain/document knowledge [6];
incremental recovery to allow partial system recovery [7];
and hierarchical decomposition to deal with complexity and
tractability issues inherit to the analysis of large systems [6].
The clustering technique proposed in this paper acts as an
effective user assistant by providing an adequate level of
automation and useful information so that the user can in-
vestigate and control the recovery process.

7. Case study

In this section, we describe the results of applying the
proposed multi-view framework on two medium-size open
source software systems, Xfig drawing tool and Pine email
client system3. Because of space limitation in this paper we
discuss Pine system for a statistical comparison with Xfig;
however, the full analysis is presented only for Xfig. We
use the Alborz reverse engineering toolkit [14] in our ex-
periments to study the architecture of Xfig 3.2.3d [1] which

3We experimented with Pine 4.4.0 which is a medium-size (207
KLOC), open source system that is written in C.

# Scenario
1 ”User draws ellipse by radius.”
2 ”User draws ellipse by diameter.”
1 ”User draws circle by radius.”
2 ”User draws circle by diameter.”
3 ”User draws closed spline by control points.”
4 ”User draws spline by control points.”
5 ”User draws closed interpolated spline by control points.”
6 ”User draws interpolated spline by control points.”
7 ”User draws polygon.”
8 ”User draws polyline.”
9 ”User draws rectangle.”

10 ”User draws rounded corner rectangle.”
11 ”User draws regular polygon.”
12 ”User draws arc by three points.”
13 ”User pictures object.”
14 ”User inputs text.”

Figure 9. Generated scenarios for drawing
part of Xfig.

is an open source, medium-size (80 KLOC), menu driven,
C language drawing tool under X Window system. Xfig
is used to draw and manipulate graphical objects (circle,
ellipse, line, spline, rectangle, and polygon) through oper-
ations such as copy, move, delete, edit, scale, and rotate.
In the following, each step of our experiments is described
with respect to the framework in Section 3 and the three
views in Sections 4 to 6.

7.1. Design view generation

In this subsection we demonstrate the results of apply-
ing the three steps of design view generation described in
Section 4.

Scenario generation.Figure 9 presents the set of sce-
narios that are generated using domain knowledge and user
interface of the drawing part of Xfig tool. These scenarios
conform with the structure imposed by the scenario syntax
in Section 4. For example, Scenario #1 in Figure 9 conforms
with the scenario syntax, as follows:

User is an Actor (N = 1); draws is an Action (N = 1);
ellipse and radius are Working Information (N = 2); and
there is no Constraint related to any of them (M = 0 for all).

Scenario decomposition. Every generated scenario
is parsed according to the scenario domain model in
Figure 5 and the generated instances of the domain model
classes are stored in the objectbase. As an example, the
generated instances from decomposition of Scenario #1 are
as follows:

7
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Figure 10. Generated ER diagram for drawing
part of Xfig.

Decomposition of Scenario #1 in Figure 9
actor = user

information = ellipse

information = radius

action = draw

data dependency|Is associated with = (user, ellipse)
data dependency|Is associated with = (ellipse, radius)

The same steps are repeated to cover the scenarios of the
editing part of the Xfig. However, the details for this part
are not presented here due to space limitation.

Design diagram generation.Figure 10 illustrate parts
of the generated ER diagram for drawing, and Figure 11
illustrates the activity diagram for drawing and editing parts
of Xfig tool. The detailed guidelines for generating ER and
activity diagrams from the objectbase are not presented in
this paper.

7.2. Behavior view recovery

In this subsection the results of applying the behavior re-
covery process on the Xfig drawing tool is demonstrated. In
the activity diagram in Figure 11, each activity box corre-
sponds to a certain feature of Xfig. In order to generate the
feature-specific scenario set that targets a certain feature, we
select the collection of all possible paths in the activity di-
agram that initiate from the start node and pass the specific
feature. For example, the set of feature-specific scenarios
for draw ellipse by radiusfeature includes scenarios such
as:”User draws ellipse by radius, and moves ellipse by ra-
dius.”, ”User draws ellipse by radius, and rotates ellipse
by radius.”, and”User draws ellipse by radius, and copies
ellipse by radius.”

In a further step, we execute the resulting feature-specific
scenario sets, and finally extract the execution patterns for
each set. Table 1 presents the statistical information for both
Xfig drawing system and Pine email client, where “average
trace size” and “average pruned trace size” are in the range
of tens of thousands, whereas the number of extracted pat-

Draw closed spline
by control points

ScaleMove Rotate Copy

... Input text
by radius by diameter

Draw ellipse Draw circle

...

Editing

Drawing

to Filing

Figure 11. Generated activity diagram for
drawing and editing parts of Xfig.

terns are in the range of tens (or hundreds). This signifies
drastic reductions in the sizes of the traces to be analyzed
after pattern mining operations.

Figure 12 illustrates a part of concept lattice that rep-
resents six extracted Xfig features and their corresponding
functions. The results of the feature to function mapping for
the features in Table 1 are shown in Table 2.

7.3. Structure view recovery

The feature to function mapping presented in Table 2 is
used to select main seeds for the clustering algorithm in this
stage. In our case study, we selected each core function of
the featuredrawing circle by radiusin the first row of Table
2 as a main seed. The clustering algorithm groups a set of
cohesive functions around each seed.

Figure 13 illustrates the result of clustering a small group
of Xfig functions into three modules (clusters) according
to the featuredrawing circle by radius. The extracted
core functions for this feature presented in the first row
of Table 2 represents the functions that are required to
draw a circle. In this context, the drawing operation be-
gins with selecting the specific shape (i.e., circle by radius)
that is implemented bycirclebyradiusdrawing selected.
The operation continues by initializing a new circle, using
init circlebyradiusdrawing, and terminates after creating a
circle using thecreatecircle byradfunction.

In Figure 13 the main-seeds of the clusters have been
highlighted. In this case, cluster 2 has one main-seed and
cluster 1 and cluster 3 contain two main-seeds. This is
because the main-seeds in cluster 1 (or 3) have generated
highly overlapped clusters of functions as an evidence that
their clusters must merge. A close investigation of the gen-
erated clusters indicates that each cluster consists of func-

8



System Specific Number of Average Average Number of Average
Feature of Xfig Different Scenarios Trace Size Pruned Trace Size Extracted Patterns Pattern Size
Circle-Diameter 10 7234 2600 46 33
Circle-Radius 10 8143 2463 48 32

Xfig Ellipse-Diameter 10 6405 2536 41 37
Ellipse-Radius 10 7351 2549 39 35

Compose 3 58660 14930 46 529
Folder List 4 22410 6743 24 491

Pine Message Index 5 39000 12760 43 345
Address Book 3 59221 16024 70 212

Table 1. The result of execution trace generation and execut ion pattern mining for a collection of 4
features for Xfig drawing tool and for Pine email client syste m.

Figure 12. A Part of concept lattice represen-
tation of the specific features and their corre-
sponding functions for the Xfig drawing tool.

tions with similar naming convention to ensure that the
modules are cohesive. The following interpretations can be
made by investigating the three clusters. Cluster 1 collects
functions that are required for initializing different shapes
in Xfig; where all 16 functions in this cluster have been pre-
fixed by the keywordinit (as initialize). This is a strong
indication of the cohesiveness of this module. Cluster 2
collects functions that are required forselectingdifferent
shapes. Cluster 2 has 10 functions where 9 functions have
been post-fixed withselectedthat are used to select four
types of figurescircle, spline, ellipse, and line. Finally,
Cluster 3 collects functions that implement drawing circle
/ ellipse by diameter / radius. The naming convention of
the functions in these three clusters suggest that the design
of Xfig is based on replication of functionality for similar
features.

Feature Extracted Core Functions
Circle init circlebyradiusdrawing, elasticcbr, resizingcbr
Radius createcirclebyrad, circlebyradiusdrawing selected
Circle init circlebydiameterdrawing, elasticcbd, resizingcbd
Diameter createcirclebydia, circlebydiameterdrawing selected
Ellipse init ellipsebydiameterdrawing, elasticebd, resizingebd
Diameter createellipsebydia, ellipsebydiameterdrawing selected
Ellipse init ellipsebyradiusdrawing, elasticebr, resizingebr
Radius createellipsebyrad, ellipsebyradiusdrawing selected

Table 2. Extracted core functions corre-
sponding to 4 specific Xfig features.

8. Conclusion

In this paper, we presented a novel multi-view frame-
work to recover three views of a software system (i.e., de-
sign, behavior, and structure) that are orchestrated by the
task scenarios as the key elements for extraction and collab-
oration of the three views. The design view generation is
based on a systematic approach to define a set of task sce-
narios that are mapped onto a scenario domain model. The
behavior view is built on the analysis of the execution traces
that are extracted by running feature-specific task scenarios
on the instrumented software system that generates a group
of core functions that implement a specific feature. Finally,
the group of core functions will be used in the structure view
recovery in order to produce larger groups of cohesive func-
tions that correspond to the targeted feature. The latter view
provides a link between abstract elements and features in
the design view to the implementation of those features in
source code. The proposed approach incorporates pattern
mining as an integral part of the structure and behavior view
recovery. The multi-view environment has been built in a
toolkit called Alborz as a plug-in application for the Eclipse
software development environment. The proposed multi-
view recovery has challenging issues to be dealt with. The
software instrumentation tools usually produce very large
execution traces that need to be pruned from noise or loop-
based patterns. Similarly, the discovery of the patterns using
data mining algorithms usually generates an overwhelming
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Figure 13. The result of clustering Xfig functions according to the feature circle-by-radius.

number of patterns both in behavior and structural views,
hence a post-processing may be required to obtain the ma-
jor and sufficiently distinct patterns as the core functionality
of the static/dynamic components.
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